CSE140L Exercises

- 1. Use CMOS complementary logic to implement the following functions. Draw the circuit to show your design.
- a) f(a) = a'.
- b) f(a,b) = (a+b)'.
- c) f(a,b,c) = ((a+b)c)'.
- 2. Design a 3-bit Johnson counter. Show the function behavior of the counter.
- a) Suppose the flip-flops are reset initially, list all possible states (Q_2,Q_1,Q_0) generated by the counter.
- b) Suppose the flip-flops are not reset initially. Instead, the initial state is $(Q_2,Q_1,Q_0) = (0,1,0)$. List all possible states generated by the counter.
- 3. Given a Mealy machine as described by the following state table. Transform the Mealy machine to a Moore machine. Write the state table.

PS	x=0	x=1	
A	A, 1	B, 0	
В	C, 1	D, 1	
C	A, 0	E, 0	
D	B, 0	E, 0	
Е	B, 1	D, 1	
	NS, z		

4. Assume a computer system has a simple instruction set described as follows:

Command	2-bit	6-bit	Description
	Instruction	Data	
Movel	00	$d_5d_4d_3d_2d_1d_0$	Move data $d_5d_4d_3d_2d_1d_0$ to register R1.
Move2	01	$d_5d_4d_3d_2d_1d_0$	Move data $d_5d_4d_3d_2d_1d_0$ to register R2.
shift	10	$XXXd_2d_1d_0$	Left rotate the content of R1 by d ₂ d ₁ d ₀ bits
			and store the result back to R1.
mask	11	XXXXXX	Mask the contents of R1 and R2; store the
			result back at register R1.

The registers block has two 6-bit input data ports: M[5:0] and D[5:0]; the former is from the memory source and the latter is from the datapath. The outputs of R1 and R2 are connected to the datapath module. Control signals R1_en and R2_en are the enable signals for R1 and R2 respectively. Control signal R1_sel is used to select the sources of R1.

The function of the registers block is described in the following table:

R1_en	R2_en	R1_sel	clk	R1[5:0]	R2[5:0]
1	0	0	↑	M[5:0]	No Change
1	0	1	1	D[5:0]	No Change
0	1	X	↑	No Change	M[5:0]

- a) Write the truth table of the instruction decoder (control subsystem). Use the 2-bit instruction as inputs and R1_en, R1_en, R1_sel as outputs.
- b) Complete the following program that performs the divide-by-two function. By the end of your program you should have data $(0,0,a_5,a_4,a_3,a_2)$ stored in R1.

move1 $a_5a_4a_3a_2a_1a_0$ -- move data $a_5a_4a_3a_2a_1a_0$ into R1