

1.

2. The 3-bit Johnson counter is shown in the following figure.

- a) The possible states are: (0,0,0), (0,0,1), (0,1,1), (1,1,1), (1,1,0), (1,0,0)
- b) The possible states, with initial state (0,1,0) are: (0,1,0), (1,0,1)
- 3. A and B both have incoming edges with different output values, so A is split into A0 and A1, and B is split into B0 and B1.

PS	x=a	x = b	Output
A0	A1	В0	0
A1	A1	В0	1
В0	С	D	0
B1	С	D	1
С	A0	E	1
D	B0	E	1
E	B1	D	0

a) The truth table is as follows:

Inst(7)	Inst(6)	R1_en	R2_en	R1_sel
0	0	1	0	0
0	1	0	1	x
1	0	1	0	1
1	1	1	0	1

b)

move1 a5a4a3a2a1a0 - move data into R1

 $move2 \quad 001111 \quad \quad -move \ masking \ data \ into \ R2$

 $\begin{array}{ccc} \mathrm{shift} & 000100 & -\mathrm{\,left\ rotate\ R1\ by\ 4} \\ \mathrm{mask} & 000000 & -\mathrm{\,mask\ R1\ and\ R2} \end{array}$