
LAB-4 DISCUSSION
FALL 2010, CSE 140L, UCSD

GOPI TUMMALA

OBJECTIVE

 In this lab, we will build a tiny computer TC140L -Tiny Computer

140Lab - (description given separately) in Verilog. The execution results

will be displayed in the LED digits of your board. Unlike a real computer,

our tiny computer will consist of few instructions.

SYSTEM OVERVIEW

 A traditional digital computer

consists of three main units

 The processor or central

processing unit (CPU)

 The memory that stores program

instructions and data

 The input/output hardware that

communicates to other devices

 Typically, signals on the bus

include the memory address,

memory data, and bus status.

INTERNALS

 Internally, the CPU contains a small number of registers that are used to

store data inside the processor.

 Registers such as PC, IR, AC, MAR and MDR are built using D flip-flops

for data storage. One or more arithmetic logic units (ALUs) are also

contained inside the CPU.

 The ALU is used to perform arithmetic and logical operations on data

values.

 Common ALU operations include add, subtract, multiplication and

logical and/or operations.

COMPUTER PROGRAMS AND

INSTRUCTIONS

 A computer program is a sequence of instructions that perform a

desired operation. Instructions are stored in memory.

 in this Lab-4, an instruction consists of 16 bits.

 The high eight bits of the instruction contain the instruction operation

code or "opcode" specifying the operation, such as add

 The low eight bits of each instruction contain a memory address field.

Depending on the opcode, this address may point to a data location or

the location of another instruction.

SMALL ISA AND EXAMPLE

Instruction Mnemonic Operation Preformed Opcode Value

ADD address AC <= AC + contents of memory

address

00

STORE Address contents of memory address <= AC 01

LOAD Address AC <= contents of memory address 02

JUMP Address PC <= address 03

Example Computer Program for A = B + C:
Assembly Language Machine Language

LOAD B 0211
ADD C 0012
STORE A 0110

CONTROL PART

 The primary operation performed by the processor is the execution of

sequences of instructions stored in main memory.

 The CPU (processor) fetches (reads) an instruction from memory,

decodes the instruction to determine what operations are required, and

then executes the instruction.

 The control unit controls this sequence of operations in the processor

CONTROL FLOW AND PATH

 A simple state machine called the control
unit controls the sequence of operations in
the processor

 The CPU contains a

 General-purpose data register called the
accumulator (AC)

 The program counter (PC)

 The arithmetic logic unit (ALU) - used for
arithmetic and logical operations

 The processor fetches an instruction from
memory, decodes the instruction to
determine what operations are required, and
then executes the instruction

REGISTER TRANSFER OPERATIONS

 The program counter contains the address of the current instruction.

 To fetch the next instruction from memory the processor must increment the program
counter (PC).

 The processor must then send the address value in the PC to memory over the bus by
loading the memory address register (MAR) and start a memory read operation on the
bus.

 After a small delay, the instruction data will appear on the memory data bus lines, and it
will be latched into the memory data register (MDR).

 Execution of the instruction may require an additional memory cycle so the instruction is
normally saved in the CPU's instruction register (IR).

 Using the value in the IR, the instruction can now be decoded.

 Execution of the instruction will require additional operations in the CPU and perhaps
additional memory operations.

 The Accumulator (AC) is the primary register used to perform data calculations and to
hold temporary program data in the processor.

 After completing execution of the instruction the processor begins the cycle again by
fetching the next instruction

CONTROL UNIT FSM
After this sequence of

operations, the current

instruction is in the

instruction register (IR).

Using the address field, a

memory read is started in the

decode state.

Each instruction requires a short sequence of register

transfer operations to implement or execute that

instruction

DATAPATH

 A computer’s datapath consists of the registers, memory interface,

ALUs, and the bus structures used to connect them.

 The vertical lines are the three major busses used to connect the

registers.

 On the bus lines in the datapath, a “/” with a number indicates the

number of bits on the bus.

 Data values present on the active busses are shown in hexadecimal.

 MW is the memory write control line.

 Since the PC and MAR are reset to 00, program execution will start at

00.

DATAPATH - DESIGN AFTER APPLYING

RESET

DATAPATH – FETCH STATE

1. MAR = PC prior to

fetch,

2. Read memory,

3. IR = MDR,

4. PC = PC + 1

DATAPATH – DECODE STATE

1. Decode Opcode to find

Next State,

2. MAR = IR, and

3. Start memory read

DATAPATH – EXECUTE STATE

1. AC = AC + MDR,

2. MAR = PC*, and

3. GOTO FETCH

VERILOG CODE

1. To demonstrate the operation of the tiny computer using Verilog, a Verilog model of
the tiny computer is given

2. The computer’s RAM memory is implemented using the Altsyncram function which
uses the FPGA’s internal memory blocks.

3. The remainder of the computer model is basically a Verilog based state machine that
implements the fetch, decode, and execute cycle.

4. The first few lines declare internal registers for the processor along with the states
needed for the fetch, decode and execute cycle.

5. A long CASE statement is used to implement the control unit state machine. A reset
state is needed to initialize the processor.

6. In the reset state, several of the registers are reset to zero and a memory read of the
first instruction is started.

7. This forces the processor to start executing instructions at location 00 in a
predictable state after a reset.

8. A second case statement at the end of the code makes assignments to the memory
address register based on the current state.

QUESTIONS – PART1

 Full computer implementation for ADD instruction is given and you

should extend this code for rest of the instructions. Most of the

modules and structure of the code is provided. You need to extend the

given code and implement the following:

1. Instruction Fetch Stage

2. Instruction Decoder Stage (for additional instructions)

3. Control/Execute FSM (sequential)

4. ALU (combinational) for the instructions

INSTRUCTION SET ARCHITECTURE

Instruction Mnemonic Operation Preformed Opcode Value

ADD Address AC <= AC + contents of memory address 00

STORE Address contents of memory address <= AC 01

LOAD Address AC <= contents of memory address 02

JUMP Address PC <= address 03

JNEG Address If AC < 0 Then PC <= address 04

SUB Address AC = AC - MDR 05

XOR Address AC = AC XOR MDR 06

OR Address AC = AC OR MDR 07

AND Address AC = AC AND MDR 08

JPOS Address IF AC > 0 THEN PC <= address 09

JZERO Address If AC = 0 Then PC <= address 0A

ADDI Data AC = AC + Data 0B

OUT xxxx 7-Seg LED displays hex value of AC 0C

SHL Data AC = AC shifted left by data bits 0D

SHR Data AC = AC shifted right by data bits 0E

SPECIAL INSTRUCTIONS – PART 1

1. In the logical XOR instruction each bit is exclusive OR’ed with the

corresponding bit in each operation for a total of sixteen independent

exclusive OR operations.

2. This is called a bitwise logical operation.

3. OR and AND are also bitwise logical operations.

4. For Shift instructions, only the low four bits of the address field

contain the shift amount. The other four bits are always zero.

5. For OUT instructions modify or use only the low eight bits of AC.

QUESTIONS – PART1I

 Find the maximum clock rate of the Tiny computer.

 Examine the project’s compiler report and find the logic cell (LC)

percentage utilized

 Do the compilation only for TC140L module

QUESTIONS – PART1II

The TC140L’s multiple clock cycles per instruction implementation

approach was used in early generation microprocessors. These

computers had limited hardware, since the VLSI technology at that time

supported orders of magnitude fewer gates on a chip than is now

possible in current devices.

 Google and explain in no more than a paragraph as to what the

following are

 Pipelined processor

 Superscalar processor

 How could you extend the Tiny computer design to modernize by

incorporating the above features. (Write in two/three points)

VERILOG FILES

 Clock_divider.v – Feel free to hack here to change the operating clock

 HexDigit.v

 Instruction_decoder.v – Write your decoding logic here

 Instruction_fetch.v – Write your fetch logic here

 Lab4_de1.v – Don’t Update – Top-level file with DE1 pin-mapping

 Lab4_de2.v – Don’t Update – Top-level file with DE1 pin-mapping

 Tc140l.v – Please update FSM inside this file.

TO LOAD A DIFFERENT TEST PROGRAM

// Reads in mif file for initial program and data values

//RAM.init_file = "fibo1.mif",

RAM.init_file = “new_test_program.mif",

Comment out the given fibonacci test program and overwrite with your

new test program

CLOCK HACK

 The clock will can be varied by hacking clock_divider.v

 e.g.:

parameter DIV_CONST = 10000000; // for 1Hz clock

parameter DIV_CONST = 4000000; // etc

 Feel free to hack this constant to slow down the clock or accelerate it.

INPUT KEYS

Buttons on Board:

Push/Toggle buttons:

KEY[0]: reset

SW[3]: Input clock ticks (used to debug)

SW[4]: Selects between internal clock and your Inputs to tick the

processor from KEY[3] i.e. Pushbutton 3

OUTPUT KEYS

OUTPUT: Four numbers output to the 4 LED displays in hexadecimal
format

Buttons on Board:

Toggle Keys:

SW[2:0]: Selects between the following displays

3'b000: Accumulator

3'b001: PC

3'b010: MDR (Memory Data Register)

3'b011: IR

3'b100: OUT

@WEBCT

Any questions ?

