Searching Sequence databases 1:

Quizz

Expectation:

- Discrete variable X takes values 1,2,3
- $\operatorname{Pr}[X=1]=0.2$
- $\operatorname{Pr}[X=2]=0.6$
- $\operatorname{Pr}[X=3]=0.2$
- $E(X)$?
$\lrcorner X$ is one of n values $X_{1} \ldots X_{n}$, and they are equiprobable.
- $E(X)$?
- How is a scoring matrix used?

Blosum62 (PAM)

blosum62

ARSTW
AASTD

Score=8

	A	R	N	D	6	Q	E	\square	H	I	L	K	M	F	P	5		,	
A	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2
A	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2
N	. 2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	4	-2
0	-2	-2	1	6	-3	0	2	-1.	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3
(0	-3	-3	-3	9	-3	4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-z	-2
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	- 1	0	-1	-2	-1
-	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	$\cdot 2$	-3	-1	0	-1	-3	-2
G	0	-2	0	-1	-3	-2	-2	6	-2	4	-4	-2	-3	-3	-2	0	-2	-2	-3
H	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	2	-1	-2	-2	2
1	-1	-3	. 3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1
L	-1	-2	-3	-4	-1	-2	-3	4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2
N	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1
F	-2	-3	-3	. 3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3
	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3
5	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2
I	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2
W	-3	-3	-4	4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1

Matrix Multiplication

- Consider $3 n X n$ matrices A_{1}, A_{2}, A_{3}

L Let $A_{3}=A_{1} A_{2}$

$$
A_{3}[i, j]=\square^{n} A_{1}[i, k] A_{2}[k, j]
$$

PAM again

- Two sequences are 1 PAM apart if they differ in 1% of residues
- Two sequences s and t are k PAMs apart if
- There exists sequence s' such that
-s and s' are 1 PAM apart
- s' and t are k-1 PAMs apart

$$
\begin{aligned}
& P A M_{2}\left[A^{\prime}, L^{\prime} L^{\prime}\right]=\square_{X=' A^{\prime}}^{\prime Y} P A M_{1}\left['^{\prime}, X\right] P A M_{1}\left[X, L^{\prime} L^{\prime}\right] \quad P A M_{2}=P A M_{1}^{2} \\
& P A M_{3}\left[A^{\prime} A^{\prime}, L^{\prime}\right]=\square_{X=A^{\prime}}^{\prime Y^{\prime}} P A M_{1}\left['^{\prime} A^{\prime}, X\right] P A M_{2}\left[X, L^{\prime}\right] \\
& P A M_{250}\left[' A^{\prime}, L^{\prime}\right]=\square_{X==^{\prime}}^{\prime} A^{\prime} Y^{\prime} P A M_{1}\left[A^{\prime}, X\right] P A M_{249}\left[X, L^{\prime} L^{\prime}\right] \\
& P A M_{3}=P A M_{1} \square P A M_{2}=P A M_{1}^{3} \\
& P A M_{250}=P A M_{1} \square P A M_{249}=P A M_{1}^{250}
\end{aligned}
$$

P-value computation

- How significant is a score? What happens to significance when you change the score function
- A simple empirical method:
- Compute a distribution of scores against a random database.
- Use an estimate of the area under the curve to get the probabilitity.
- OR, fitt the distribution to one of the standard distribbutions.

Z-scores for alignment

- Initial assumption was that the scores followed a normal distribution.
- Z-score computation:
- For any alignment, score S, shuffle one of the sequences many times, and recompute alignment. Get mean and standard deviation

$$
Z_{S}=\frac{S \square \square}{\square}
$$

- Look up a table to get a P-value

Normal Distribution

Blast E-value

- 1990, Karlin and Altschul showed that ungapped local alignment scores follow an exponential distribution
- Practical consequence:
- Longer tail.
- Previously significant hits now not so significant

Exponential distribution

- Random Database, $\operatorname{Pr}(1)=p$

What is the expected number of hits to a sequence of k 1's

$$
(n \square k) p^{k} \square n e^{k \ln p}=n e^{\square k \ln \cap 1 p[}
$$

- Instead, consider a random binary Matrix. Expected \# of diagonals of $k 1$ s
- As you increase k, the number decreases exponentially.
- The number of diagonals of k runs can be approximated by a Poisson process

$$
\begin{aligned}
& \operatorname{Pr}[u \text { hits }]=\frac{\square^{u} e^{\square \square}}{u!} \\
& \operatorname{Pr}[u>0]=1 \square e^{\square \square}
\end{aligned}
$$

- In ungapped alignments, we replace the coin tosses by column scores, but the behaviour does not change (Karlin \& Altschul).
- As the score increases, the number of alignments that achieve the score decreases exponentijally

Blast E-value

- Choose a score such that the expected score between a pair of residues < 0
- Expected number of alignments with a particular score

$$
\begin{aligned}
& E=K m n e^{\square \boxed{ }}=m n 2^{\square \frac{\square \Omega \square \ln K}{\ln 2},} \\
& \operatorname{Pr}(\# \mathrm{hsp}>0)=1 \square e^{\square K m n e^{\square \boxed{ }}}
\end{aligned}
$$

- For small values, E-value and P-value are the same

Keyword Search

