CSE252B - Computer Vision - Assignment #2 Instructor: Prof. Serge Belongie. http://www-cse.ucsd.edu/classes/sp04/cse252b Target Due Date: Mon. Apr. 26, 2004.

- 1. 2D Projective Transformations.
 - (a) Implement MaSKS Algorithm 5.2 (The four-point algorithm for a planar scene), p. 139.
 - (b) Use the four-point algorithm with $n \ge 4$ hand-clicked correspondences to remove the projective distortion from three images: building.gif, floor.gif, and one image of your own choice.
- MaSKS Exercise 5.19 (Two physically plausible solutions for the homography decomposition), p. 163.
- 3. Prove MaSKS Corollary 5.23 (From essential matrix to homography), p. 142.
- 4. MaSKS Exercise 5.11 (Four motions related to an epipolar constraint), p. 161.
- 5. Reconstruction from Two Calibrated Views.
 - (a) Implement MaSKS Algorithm 5.1 (The eight-point algorithm), p. 121.
 - (b) Run the script make_scene.m to produce two views of a synthetic scene, $\{x_i^j\}_{j=1}^n, i = 1, 2$. Use the eight-point algorithm to estimate the four possible decompositions (R, \hat{T}) for E.
 - (c) Estimate the depths of the points and the global scale factor by solving for $\vec{\lambda}$ in MaSKS Equation (5.21), p. 125 (Linear triangulation). Record the values of R, T and γ for which all the depths are positive.
 - (d) Plot the estimated 3D coordinates of the pointset relative to each camera frame.
 - (e) Compute the reprojection error using MaSKS Equation (5.23), p. 127.
- 6. Implement Hartley normalization as defined in MaSKS Equation (6.77), p. 212. Demonstrate it on a set of 100 random 2D points distributed uniformly on the rectangular area [1, 128]×[1, 192].
- 7. Epipolar Geometry for Uncalibrated Views.
 - (a) Implement MaSKS Algorithm 6.1 (The eight-point algorithm for the fundamental matrix),
 p. 212, with Hartley normalization.
 - (b) Run your code on the stereo pair of desk1.gif and desk2.gif with $n \ge 8$ hand-clicked correspondences. Plot the epipolar lines ℓ_1 and ℓ_2 for at least three points in the first view, and verify that they pass through the corresponding points in the second view.
 - (c) Solve for the coordinates of the epipoles e_1 and e_2 .
 - (d) Repeat the above two steps for another stereo pair of your own choosing.
- 8. Stereo Rectification.
 - (a) Implement MaSKS Algorithm 11.9 (Epipolar rectification), p. 406.
 - (b) Demonstrate your code on the image pair blocks{1,2}.gif.