CSE 252B: Computer Vision II

Lecturer: Serge Belongie
Scribe: Sameer Agarwal

LECTURE 1

Image Formation

1.1. The geometry of image formation

We begin by considering the process of image formation when a scene is
viewed through a camera. The word camera has its origins in the Latin
camera and the Greek kamara, both of which refer to a room or a chamber.
In particular we will consider image formation through a pinhole camera.
This is the dominant image formation model that is studied in computer
vision.

A pinhole camera is a box in which one of the walls has been pierced to
make a small hole through it. Assuming that the hole is indeed just a point,
exactly one ray from each point in the scene passes through the pinhole and
hits the wall opposite to it. This results in an inverted image of the scene,
as can be seen in figure 1.

The inversion of the image is an annoyance and can be corrected for by
instead considering a virtual image of the scene on a virtual plane parallel
to the imaging plane but on the opposite side of the pinhole.
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Figure 1. The pinhole imaging model, from Forsyth & Ponce.

Let us begin by considering a mathematical description of the imaging
process through this idealized camera. We will consider issues like lens dis-
tortion subsequently.

The pinhole camera or the projective camera as it is known images the
scene by applying a perspective projection to it. In the following we shall re-
fer to scene coordinates with upper case roman letters, {X,Y, Z,...}. Image
coordinates will be referred to using lower case roman letters, {x,y,z,...}.
Vectors shall be denoted by boldfaced symbols, e.g., X or x. (In class, when
writing on the blackboard, I will put a tilde underneath the corresponding
symbols to denote a vector.)

The scene is three dimensional, whereas the image is located in a two
dimensional plane. Hence the perspective projection maps the 3D space to
a 2D plane.

(X, Y7 Z)T Projection (ZE, y)T
The equations of perspective projections are given by

(1) v=ry =1y

here, f is the focal length of the camera, i.e., the distance between the image
plane and the pinhole.
The process is illustrated in figure 2.
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Figure 2. Image formation in a projective camera.
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1.2. Homogeneous Coordinates

We now introduce a slightly modified representation of the points in the
image plane. The usual representation of the image point

x=(z,y)"

is referred to as the inhomogeneous representation of the point @. The
homogeneous representation of a point @ is given by

x = (x,y, 1)T

In fact, the homogeneous representation of a point maps it to an entire class
of set of points:

(,y) < (Az, Ay, \), YA #£0
in particular,
(z/2,y/2) < (2,9, 2)
Homogeneous coordinates encode the invariance of all points along a line
and its projection.

The equation of a line

The equation of a line
ar+by+c=0

can be rewritten using homogeneous coordinates
x'l=0, where 1= (a,bc)"

The equation of a conic

The general conic in 3 dimensions is given by

ar® + bxy + cy? +drvz +eyz + f22 =0

which can be written using 2D homogeneous coordinates as

x'Cx=0
where
a b/2 d/2
C=1b/2 c ¢)2
/2 e/2 f

The matrix C' has 6 unique entries. The equation remains invariant under
a scaling of all coeffecients, hence a conic has 6 — 1 = 5 degrees of freedom.
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1.2.1. What if the third coordinate is zero?

Up till now we have considered homogeneous points of the form

What about points for which z = 07 This issue goes to the heart of the
fact that we are dealing with the projective plane P? instead of the Euclidean
plane R?. The primary distinction between the two is that in R? all pairs
of lines intersect except for the ones that are parallel; in P? there is no such
restriction, and all pairs of lines interesect. Parallel lines lines intersect in
points at infinity (also known as ideal points) and these points have the form

(2,9,0)"
Consider the two lines given by
(1.2) I, = (ay,b,er)’
(1.3) I, = (ay,boco)’
The intersection of these two lines is given by their vector cross product,
(1.4) x = b xl
0 —c b as R
(1.5) = c 0 - by | =11,
-b; 0 Co

Here, lAl is a skew symmetric matrix that converts the vector cross product
into a matrix-vector product. The symbol [ is referred to as the wedge or
hat of I and matrices of this form constitute a group denoted by so(3), the
group of 3 x 3 skew symmetric matrices.

Now we can return to the intersection points of parallel lines in P?. Given
a line

I, = (a,b,¢)"
a line parallel to it is given by

ly = (a,b,c)"
and the intersection is now given by
(1.6) Iy x1ly, = (bd —chyac—ac,0)"
(1.7) = (c—)(b,—a,0)"
(1.8) ~ (b,—a,0)"

The symbol ~ refers to projective equivalence and (b, —a,0)" is an ideal
point. Thus the set of ideal points (i.e., points at infinity) is the set of points
where parallel lines intersect.
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Duality

Among the many fascinating properties that the projective plane has, per-
haps the most important one is that of duality. More specifically, in P? points
and lines are duals of each other. By this we mean that for any statement
involving points and/or lines that holds true in P2, a corresponding version
of it in which the word ‘point’ has been substituted for ‘line’ and vice versa
also holds true.

As an example of this, the point of intersection of two lines is their cross
product, the dual of which states that the line passing through any two
points is given by their cross product, i.e.,

l:mlxmg

This result along with the definition of points at infinity leads us to the
definition of the line at infinity ..
Consider two points at infinity

(1.9) z1 = (21,51,0)"
(1.10) @y = (2, 9,0)"
Now consider the line passing through these two points and denote it by
loo.
(1.11) loo = o X2
(1.12) = (0,0, 7192 — y172)*
(1.13) ~ (0,0,1)"

The line (0,0,1)" is the line at infinity and it passes through all the
points at infinity.

A model for P? in R?

As shown in Figure 3, points and lines on the image plane 7 can be identified
with a line and planes, respectively, in R3.

Any point along the ray from the optical center through the point & on
7 projects to the same point on 7. Ideal points correspond to rays lying in
the (z,y) plane.

Similarly, any line lying in the plane that intersects 7 in the line I projects
to the same line on 7. The vector [ is the normal vector of this plane in R3.
Strictly speaking, a different symbol should be used for the image of the line
on 7, but the intended meaning of I will be clear from the context. The line
at infinity I, corresponds to the plane with normal vector (0,0,1)7, i.e., the

(x,y) plane.
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Figure 3. An illustration of how lines in R map to points in P? and
the projective line I corresponds to the plane in R3 with normal vector 1.
(Figure from Hartley & Zisserman.)

Intrinsic/Extrinsic Parameters of a Camera

Let us now consider a more general image formation model that accounts
for a number of factors affecting image formation in real cameras.

Let us begin by stating the general image formation model. The following
equation maps the real world point Xy in homogeneous coordinates to its
projection &’ also in homogeneous coordinates.

T fse [se o 1 0 00 R T i(/o
(1.14) X ¢ | =] 0 fs, o 0100 [OT 1] Zz

1 0 0 1 0010 ] 15

x’ }g ﬁg g ——

The matrix Il is the canonical projection matrix. The matrix K consists
of the intrinsic parameters of the camera. Here f is the focal length of the
camera, s, and s, give the relative aspect of each pixel. o, and o, specify
the coordinates of the image center. sy is the skew in the shape of the pixel,
i.e., its deviation from an axis aligned rectangle.

The matrix g defines the pose of the camera. The elements of g constitute
the extrinsic parameters of the camera. Here, R is a 3 X 3 rotation matrix
and T is a vector in R3.

The task of camera calibration is to estimate the K and g matrices.
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The Camera Pose

We consider the problem of specifying the rotation matrix R. R represents
an arbitrary rotation in 3 dimensions. In fact, the set of such matrices form
a group under matrix multiplication, and it is known as SO(3), the Special
Orthogonal group in 3 dimensions.

The group is orthogonal because

(1.15) R'R=RR" =1
and special because
(1.16) det(R) = +1

If the determinant of R is allowed to be —1, that would allow for mirror
reflections. The pose of the camera (R, T') is capable of representing arbitrary
rigid motion in 3 dimensions. The set of poses of a camera also forms a
group known as the Special Euclidean group in 3 dimensions, SE(3). It is
the cartesian product of the group SO(3) with the Euclidean space R3:

SE(3) = SO(3) x R?

There are many ways of computing the rotation matrix corresponding to
a rotation, e.g., quarternions. Here we will use the Axis and Angle method.
It allows for a particularly simple formalism.

Any arbitrary rotation in R® can be represented as a unit vector w that
represents the axis of rotation and a scalar # that indicates the amount of
rotation (in radians) around w. The relation between the rotation matrix R
and (w, ) can be stated as

(1.17) R=¢%
with
0 —W3 W2
@ = W3 0 —Ww1
—W9 w1 0

To exponentiate this matrix we use the following compact formula.

1.2.2. Rodrigues’ Formula

Rodrigues’ formula for # € R and w € R? with |w]| =1 is

(1.18) ¢ =T+ &sinf + 5%*(1 — cos )
For w of arbitrary (but nonzero) norm, the corresponding expression is:
~ ~2
_ o w
(1.19) e =1+ —sin(||w|]) + —= (1 — cos(||w]]))
]l Jw]]?

where ||w|| = 6.
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1.2.3. Appendix: Intuition about crossing lines and points

1.2.3.1. Thoughts from Manmohan Chandraker, Spring 2004. Several people
asked about the intuition of crossing lines to get the intersection and cross-
ing points to get the line passing through them when using homogeneous
coordinates. Manmohan offered the following explanation.

First, consider the case of crossing two lines Iy and l,. Since l; X Iy is
orthogonal to both I; and Iy (by definition of the cross product), we know
(ll X lQ)le‘ = O,Z = 1, 2. If we let

w:l1><l2

then we may write 'l; = 0,7 = 1,2. This is in the form of the equation for
a line — in particular, this expresses the set of all points « in the plane that
have zero distance from lines I; and l,. If & has zero distance from both
lines, then it must lie at their intersection.

The case of crossing two points to get the line passing through them
follows a similar argument, with the roles of points and lines swapped.

1.2.3.2. Further explanation from Will Chang, Spring 2007. We learned in
class that we can obtain the intersection of two lines I; and l5 in the projective
plane P? simply by taking the cross product I; x l. Similarly, for two points
a1 and @y, we can obtain the join of the two points (the line that goes through
the points) by taking the cross product @; x ;. Why is the cross product
involved to calculating these quantities? Here is a geometric explanation.

There is a useful connection between P? and R3: each point p € P? is
identified with a line passing through the origin in R?, and a line I € P? is
identified with a plane passing through the origin in R?. The line [ in this case
is simply represented by a normal vector I = (a,b,c)" which is orthogonal
to the plane, and, without loss of generality, we can represent each point p
in P? with a unit vector along the direction of the corresponding line in R?.

With this in mind, consider the join operation between two points @1, x5 €
P2, This is illustrated in Figure 4. Viewing the situation in R3, the join op-
eration takes the unit vectors corresponding to x; and x, to produce a new
vector n which is orthogonal to both &, and x5. Here, n is actually orthogo-
nal to all vectors spanned by @, and @, i.e., the plane in R? passing through
x; and xy. Thus, n is the normal vector corresponding to this plane and
thus describes the line I in P? that passes through both x; and x».

Now consider the intersection between two lines Iy,lo € P?. This is
illustrated in Figure 5. Again, the situation in R? is that we have two
planes in R? corresponding to I; and l,, and the point of intersection & € P?
corresponds to the line formed by intersecting the two planes. Here,  must
be orthogonal to both the normals for I; and I, since x corresponds to a line



LECTURE 1. IMAGE FORMATION 9

Figure 4. Illustrating the join of two points in P2,

Figure 5. Illustrating the intersection of two lines in P2.

that lies in both planes. Therefore, x is obtained by taking the cross product
of I and l,, producing a direction that is orthogonal to both normals.



