CSE 252B: Computer Vision II

Lecturer: Serge Belongie
Scribe: Dave Berlin, Jefferson Ng

LECTURE 2

Homogeneous Linear Least Squares
Problems, Two View Geometry

2.1. Introduction

We will frequently encounter problems of the form
(2.1) Ax =0

known as the Homogeneous Linear Least Squares problem. It is similar in
appearance to the inhomogeneous linear least squares problem

(2.2) Ax =b

in which case we solve for @ using the pseudoinverse or inverse of A. This
won’'t work with Equation 2.1. Instead we solve it using Singular Value
Decomposition (SVD), as described in the following example.
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2.2. Motivating Problem: Conic Fitting

Conics were mentioned in the previous lecture. Using homogeneous coordi-
nates, they have the form

(2.3) ar® + bry + cy? +dvz +eyz + f22 =0
We can also write this as a quadratic form as
x'Cx=0

x=(z,y,2)"
where C' is the symmetric matrix
a b/2 d/2
C=1|0b/2 ¢ e/2
| d/2 e/2 f
As an example, for a unit circle, the corresponding matrix would be

(1.0 0
01 0
00 —1

which corresponds to x% + y? = 2%. We can easily convert to inhomogeneous
coordinates by letting 2’ = x/z and y' = y/z, which gives the known formula
for a unit circle, (z')? + (v/)* = 1.

There are six variables in the general conic matrix C, but because of the
homogenous property, they are arbitrary up to a scale factor. Therefore,
there are five degrees of freedom, and five points are necessary to define a
conic.

Circles are certainly conics, but they only need three points to define
them. This is not a contradiction — the other two points exist, but have
complex coordinates. These points are called circular points, that is, points
where the circle crosses the line at infinity. To find their coordinates, we
intersect the line at infinity I, = (0,0,1)" with a circle:

x'l,=0
0
(x,y,2) [ 0 | =0
1

and therefore z must be 0. Placing this back in the equation for a circle gives
2 +y" =0

and therefore for the circular points, x=1, and y== 1.
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Definition 2.4. Circular points are defined as the following:
(2.5) I=(1,i0)"

(2.6) J=(1,-4,0)"

All circles must pass through these points. In addition, these points are
ideal points (or points at infinity) and complex conjugates of each other.
Later in the course we will use these facts to help calibrate a camera.

We now formalize the conic fitting problem.

Definition 2.7. The conic fitting problem is as follows: Given n > 5 points
in a plane, {x'}"_, find the coefficient vector ¢ = (a,b,c,d, e, f)'.

At first glance, this equation seems to have little to do with homogeneous
least squares. Here, the equation is of the form 'Cax = 0. Note that C is
unknown, @ is known, and 0 is a scalar. In contrast, in the equation Ax = 0,
A is known, x is unknown, and 0 is a vector.

This discrepancy is addressed by collecting the unknowns into the coef-
ficient vector e. The constraint that the ith point places on ¢ is

[(xz)2 :Eiyi (yi)2 it yizi (ZZ)Q }CZO
This six element row vector (multiplying ¢ from the left) is known as a

carrier vector. Now we can get to the least squares problem by “stacking”
the carrier vectors into a matrix. This matrix is called the design matriz.

Definition 2.8. The design matrix is the matrix A € R"*% in the following
equation:

(2.9) Ac=0

Now it’s in the recognizable homogeneous least squares format, and we
can solve it. First, compute the SVD (see MaSKS Sec. A.7) of A:

6
(2.10) A=USV" =) o/
=1

When performed in Matlab, the singular values o; will be sorted in descend-
ing order, so og will be the smallest. There are three cases for the value of
Og-
e If the conic is ezxactly determined (n = 5), then o = 0, and there
exists a conic that fits the points exactly.
e If the conic is overdetermined (n > 5), then og > 0. Here o4 repre-
sents a “residual” or goodness of fit.

e We will not handle the case of the conic being underdetermined (n <
5).
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From the SVD we take the “right singular vector” (a column from V)
which corresponds to the smallest singular value, og. This is the solution,
¢, which contains the coefficients of the conic that best fits the points. We
reshape this into the matrix C, and form the equation ' Cx = 0.

To recap, note that although the expression for a conic looks nonlinear,
it is only the known variables (the coordinates of the £*’s) that appear non-
linearly; we were able to write the problem in homogeneous least squares
form since the coefficients appear linearly.

2.3. Two View Geometry

We now consider the geometry of two calibrated cameras viewing a scene.
We assume that the cameras are related by a rigid body motion (R,T).
(Figure from MaSKS Ch. 5.)

(B, T)

Since the cameras are calibrated, we have K; = Ky = I. The cameras
are centered at o; and og, respectively. The homogeneous vectors e; and e,
are the epipoles, and can be intuitively thought of as any of the following:

e The points where the baseline pierces the image planes

e The projection of the other camera’s optical center onto each image
plane

e The translation vector T' (up to a scale factor)

e The direction of travel (focus of expansion)

The lines Iy and Iy are the epipolar lines. The plane spanned by oy, 0, and
p is called the epipolar plane, and the epipolar lines are the intersections of
the epipolar plane with the image planes.
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2.3.1. Special Case: Rectified Stereo

Rectified stereo is the simplest case of two-view geometry in which we have
two cameras that are aimed straight forward and translated horizontally
w.r.t. each other, as if your eyes were looking straight ahead at something
infinitely far away. In this case, the epipolar lines are horizontal, and points
in one image plane map to the horizontal scan line with the same y coordinate
on the other image plane.

If the cameras are not rectified in this way, how can we find corresponding
points in the second image? It turns out we will still have a one-dimensional
search, it just won’t be as simple as being on corresponding horizontal scan
lines.

2.3.2. General Two View Geometry

We specify the pose of the two cameras, g; and g, as follows:
a1 = ([7 O)
g2 = <R7T) € SE(?))
Without loss of generality for g;, we let its rotation and translation be the
identity matrix and zero vector, respectively. For go, R is any rotation matrix
and T is the translation vector.
A 3D point p will have coordinates X; and X5 when viewed from g¢;

and gy respectively. The following equation relates coordinate systems from
camera 1 and camera 2.

(2.11) X,=RX,+T

2.3.3. The Epipolar Constraint and the Essential Matrix

We now want to find a relation between a point on one image and its possible
locations on the other image. We begin by converting the image points into
homogeneous coordinates.

For some depths \; we have

X = )\1331, Xo = Aoy
which means
/\ng = R)\1w1 + T

but A, A2 are unknown. To solve this problem, Longuet-Higgins eliminated
these depths algebraically as follows.
Take the cross product of both sides with T,

NTxy = TRMxy + TT

=0
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and take the inner product with x,,

/\233;—?332 = m;fR)\la:l

=0
:UQTT\Razl =0
(2.12) xy Bz =0

Equation 2.12 is a bilinear form and is called the essential constraint or
epipolar constraint. It gives us a line in the image plane of camera 2 for a
point in the image plane of camera 1, and vice versa.

The essential matriv E = TR € R3® compactly encodes the relative
camera pose g = (R, T).

Thus to map a point in one image to a line in the other using the essential
matrix, we apply the following equations:

l2 ~ Ewl

(2.13) xyly =0
Alternatively, you can go the other way:

ll ~ ETwQ

(2.14) x/l, =0

where 1y, ly are epipolar lines (specified in homogeneous coordinates).

2.3.4. Extracting the Epipoles From the Essential Matrix

Note that all epipolar lines in an image plane intersect at the epipole.
Equivalently, the epipole has a distance of zero from every epipolar line:
e;lg = 0,Vax,, and similarly elTll =0, Va,.

For this to hold true, eJ E and Ee; must be zero vectors, i.e.,

e, £ =0, Ee, =0
Thus e; and ey are vectors in the right and left null space of E, re-

spectively, i.e., the left and right singular vectors of E with singular value
0.



