
CSE 252B: Computer Vision II

Lecturer: Serge Belongie
Scribe: Tasha Vanesian

LECTURE 3
Calibrated 3D Reconstruction

3.1. Geometric View of Epipolar Constraint

We are trying to solve the following problem: given 2 photos of a 3-dimensional
scene, understand the relationship of the points between the photos, and use
this information to do 3D reconstruction. Last lecture we derived the epipo-
lar constraint algebraically. This lecture we will look at it geometrically.

Figure 1 shows the geometry of the epipolar constraint. Note that all
points in the figure are in homogeneous coordinates. Any point which lies
along the line between o1 and the point p will project to x1 on the image
plane of camera 1. However, all points along this line will sweep out the
epipolar line l2 on the image plane of camera 2. The line along the vector T
connecting o1 and o2 is called the baseline.

3.2. Coplanarity Constraint

The coplanarity constraint says that the three vectors T , X2, and RX1

must be coplanar, as shown in Figure 1.

1Department of Computer Science and Engineering, University of California, San Diego.

April 5, 2004

1



2 SERGE BELONGIE, CSE 252B: COMPUTER VISION II

Figure 1. The epipolar model, from Ch. 5 of MaSKS. The original cap-
tion reads: “Two projections x1,x2 ∈ R3 of a 3-D point p from two
vantage points. The Euclidean transformation between the two cameras
is given by (R,T) ∈ SE(3). The intersections of the line (o1, o2) with
each image plane are called epipoles and are denoted by e1 and e2. The
line l1, l2 are called epipolar lines, which are the intersection of the plane
(o1, o2, p) with the two image planes.”

3.2.1. How do we test the coplanarity of 3 vectors?

It is often useful to be able to test if 3 vectors are coplanar. To do this, we
use the (scalar) triple product. For three vectors a, b, c, the triple product
is defined as follows:

(3.1) a · (b× c) = a>b̂c

In general, the triple product represents the volume of the parallelepiped
spanned by the vectors a, b, and c. If the triple product is equal to zero,
this means that the three vectors are coplanar.

This means that we have

(3.2) X>
2 T̂RX1 = 0

We can divide equation (3.2) by anything we want, since the RHS is zero.
Noting that X1 = λ1x1 and X2 = λ2x2, and dividing by λ1λ2, we obtain:

x>2 T̂Rx1 = 0



LECTURE 3. CALIBRATED 3D RECONSTRUCTION 3

which can be rewritten as

(3.3) x>2 Ex1 = 0 where E = T̂R

E is the essential matrix, and is a special case of the “fundamental ma-
trix” F . (In particular, E = F if K1 = K2 = I). We will see later that E
lives in the “essential space.”

3.2.2. Solving for E

E =

 e11 e12 e13

e21 e22 e23

e31 e32 e33

 ∈ R3×3

One method of solving for E is to use the Longuet-Higgins 8 point algo-
rithm. This is Algorithm 5.1 in MaSKS.1

We would like to convert Equation (3.3) from its current bilinear form to
a form that matches the null space problem. We will do this by “stacking”
the elements of matrix E into a vector Es ∈ R9. Using MATLAB notation,
the stacking operation is denoted by

Es = E(:)

As a caveat, if the values in E have any special structure, we lose it when
stacking the elements in this manner. (For example, an E estimated in this
way will not guarantee that all epipolar lines will intersect at exactly the
same point, i.e., at the epipole.) This is discussed more below.

Kronecker Product

The Kronecker Product (kron.m) is denoted by the ⊗ symbol. Given two
vectors

x1 = (x1, y1, z1)
> and x2 = (x2, y2, z2)

>,

their Kronecker product is:

(3.4) a = x1 ⊗ x2 =

 x1x2

y1x2

z1x2

 ∈ R9.

Using the Kronecker product, we can write equation (3.3) as

a>Es = 0.

This expresses the epipolar constraint for a single correspondence.

1Alternative methods for estimating E from fewer than 8 points are possible; see MaSKS
p. 122.



4 SERGE BELONGIE, CSE 252B: COMPUTER VISION II

If we denote the correspondences by

(xj
1, x

j
2), j = 1, 2, . . . , n

and construct an a for each correspondence such that

aj = xj
1 ⊗ xj

2

then we can stack the a’s into the design matrix χ such that:

χ =

 (a1)>

...
(an)>

 ∈ Rn×9.

This allows us finally to rewrite equation (3.3) as

(3.5) χEs = 0

Solve this equation for Es using the SVD (see lecture 2 notes), then
reshape back into a matrix form to obtain E.

Degrees of Freedom in E

E has 9 entries, but because we are in homogeneous coordinates, we have
one less degree of freedom, for a total of 8 degrees of freedom. (Taking into
account the known structure of E, the true number of degrees of freedom is
actually 5, as we will see below.)

In the ideal case (no noise),

rank(χ) = 8, ‖χEs‖2 = 0.

What space does E live in?

E is a member of E , known as the “essential space.”

E .
= {T̂R | R ∈ SO(3), T ∈ R3} ⊂ R3×3

Note that rank(E) = 2. The proof is left as an exercise. (Hint: rank(Â) = 2

for any Â ∈ so(3).)
Here we can see that E has 5 true degrees of freedom, as it is the product

of a skew symmetric matrix (3 dof) and a rotation matrix (3 dof) for a total
of 6 dof less 1 dof due to the scale ambiguity.

The Structure of E

Huang and Faugeras [1989], showed that

E = UΣV > where Σ = diag{σ, σ, 0}
The proof can be found on p. 114 of MaSKS. This is the characterization of
an essential matrix. If you want to create a valid essential matrix, you can



LECTURE 3. CALIBRATED 3D RECONSTRUCTION 5

do so by creating a Σ as given above and using two orthogonal matrices to
compute E = UΣV >.

To solve for a valid E, we need to project it onto E . Call F the initial
estimate of E, and let

F = Udiag{λ1, λ2, λ3}V >, λ1 ≥ λ2 ≥ λ3.

Then choose

E = Udiag{σ, σ, 0}V >, σ =
λ1 + λ2

2
This choice of E is the one the minimizes the Frobenius norm ‖E − F‖2

f .
This two step process of estimating E from the stacked vector Es and

then projecting it onto E is a good first cut, but note that there could be a
value of E leading to a smaller value of ‖χEs‖2.

3.2.3. The Universal Scale Ambiguity

Reconstruction of a scene can only be found up to a universal scale factor.
Note that if we doubled the size of the scene while doubling the length of T ,
we’d get the same projected points on the image planes, and consequently
the same epipolar lines. We will use a “normalized essential matrix” which
means we will take σ = 1. This is equivalent to choosing ‖T ‖2 = 1, and does
not affect the rotation matrix R.

3.2.4. Finding T

To tease out T from E, note that

EE> = T̂ RR>︸ ︷︷ ︸
=I

T̂>(3.6)

= −T̂ 2(3.7)

since T̂> = −T̂ .

tr(EE>) = sum of the squares of the singular values(3.8)

= 2σ2 = 2 · 1 = 2 (using convention σ = 1)(3.9)

Remember that T = (Tx, Ty, Tz)
>, so

T̂ =

 0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0


and

T̂ 2 =

 −T 2
z − T 2

y TxTy TxTz

TxTy −T 2
z − T 2

x TyTz

TxTz TyTz −T 2
y − T 2

x





6 SERGE BELONGIE, CSE 252B: COMPUTER VISION II

Note that T̂ 2 is symmetric.

−tr(T̂ 2) = 2(T 2
x + T 2

y + T 2
z )(3.10)

= 2‖T ‖2(3.11)

Since ‖T ‖2 = 1, this means that

−T̂ 2 =

 1− T 2
x −TxTy −TxTz

−TxTy 1− T 2
y −TyTz

−TxTz −TyTz 1− T 2
z


From this matrix, we can only get the three entries in T (normalized) up

to a global sign. This means we don’t know which way the baseline goes.

3.2.5. Finding R

The Longuet-Higgins 8-point algorithm paper is on the main class website,
and describes one way of finding R. MaSKS has a less intuitive but more
elegant method which was presented in class.

Let E = UΣV > with Σ =

 1 0 0
0 1 0
0 0 0

 and RZ(±π
2
) =

 0 ∓1 0
±1 0 0
0 0 1


(rotation about the Z axis). Then the equations for pose recovery are:

R = UR>
Z (±π

2
)V >, T̂ = UR>

Z (±π

2
)ΣU>

Twisted Pairs

Accounting for the ± signs, there are 4 possible combinations of solutions
for R and T . These are shown geometrically in Figure 2. (a) is the correct
solution, in which the reconstructed point is in front of both cameras. The
direction of the translation vector from the first to the second camera is
reversed in (b). (c) and (d) are known as “twisted pairs” – they are related
to (a) and (b) by a rotation of 180◦ about the baseline. In practice, you can
make a program output all 4 possibilities for R and T , but the only solution
that makes sense is (a), when the all points are in front of the camera.

3.2.6. Estimating Depths given R and T

The Longuet-Higgins paper solves this problem algebraically; again, MaSKS
has a more elegant solution:
For the jth point:

Xj
2 = RXj

1 + γT , where γ is the universal scale factor

λj
2x

j
2 = λj

1Rxj
1 + γT



LECTURE 3. CALIBRATED 3D RECONSTRUCTION 7

Figure 2. Original caption from Ch. 8 of Hartley and Zisserman reads:
“The four possible solutions for calibrated reconstruction from E. Be-
tween the left and right sides there is a baseline reversal. Between the
top and bottom rows camera B rotates 180◦ about the baseline. Note,
only in (a) is the reconstructed point in front of both cameras.”

Since one set of depths can be obtained from the other, we can algebraically

eliminate one set of depths by hitting both sides with x̂j
2 and using the fact

that x̂j
2x

j
2 = 0

λj
1x̂

j
2Rxj

1 + γx̂j
2T = 0, j = 1, 2, . . . , n

For a single point, we have:

M jλj = [x̂j
2Rxj

1, x̂
j
2T ]︸ ︷︷ ︸

∈R3×2

[
λj

1

γ

]
︸ ︷︷ ︸
∈R2

= 0

Since we want all of the depths, let

λ = (λ1
1, λ

2
1, λ

3
1, . . . , λ

n
1 , γ)> ∈ Rn+1

and form the matrix M ∈ R3n×(n+1):

(3.12) M
.
=


x̂1

2Rx1
1 0 0 0 x̂1

2T

0 x̂2
2Rx2

1 0 0 x̂2
2T

... 0
. . . 0

...

0 0 0 x̂n
2Rxn

1 x̂n
2T





8 SERGE BELONGIE, CSE 252B: COMPUTER VISION II

so that Mλ = 0. This is a problem we know how to solve using the SVD.
All of this assumes that we have perfect correspondence, no noise, cali-

brated cameras, and that all 8 points are in “general position,” e.g., they do
not lie on the same plane (see next lecture).

The Longuet-Higgins 8 point algorithm was mostly of theoretical inter-
est until Hartley wrote a paper called “In Defence of the 8-Point Algorithm”
[1995] showing that the algorithm is actually practical (viz. numerically sta-
ble) with real data after a simple normalization step.


