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LECTURE 5
Relationships between the Homography and

the Essential Matrix

5.1. Introduction

In practice, especially when the scene is piecewise planar, we often need to
compute the essential matrix E given a homography H computed from some
four points known to be coplanar. The terminology is that H is induced by a
plane P . In some other cases, the essential matrix E may have been already
estimated using points in general position, and we then want to compute
the homography for a particular set of coplanar points. There are special
relationships between H and E that let us go between them easily.

5.2. Special Properties between H and E

Recalling the definition of essential matrix, E = T̂R, and

H = R +
1

d
TN>
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Without loss of generality we can write:

H = R + Tu>

where R ∈ R3×3 is a general nonsingular 3× 3 matrix – not necessarily a
rotation matrix – so the following results apply to both the calibrated and
uncalibrated cases. Also assume T , u ∈ R3 and ‖T ‖ = 1 . For the assumed
H and E, we have:

(a) E = T̂H
(b) H>E + E>H = 0

(c) H = T̂>E + Tv> for some v ∈ R3.

The proofs for each item are as follows.

(a)

T̂H = T̂ (R + Tu>)

= T̂R + T̂Tu> (Note: T̂T = 0)

= T̂R

= E

(b)

H>E = (R + Tu>)>T̂R

= R>T̂R + uT>T̂R (again, T̂T = 0)

= R>T̂R

also

E>H = (H>E)>

= (R>T̂R)>

= R>T̂>R (T̂ skew-symmetric)

= −R>T̂R

The above result shows that H>E is a skew symmetric matrix.
Alternatively, this can be shown as follows. Start with the epipo-

lar constraint x>2 Ex1 = 0. Substituting x2 = Hx1, we get x>1 H>Ex1 =
0 for any x1, which means H>E is skew symmetric. (See MaSKS
Exercise 2.5.)

(c) Notice that
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T̂H = T̂R

= T̂ T̂>T̂R (when ‖T ‖ = 1 then T̂ T̂>T̂ = T̂ )

= T̂ T̂>E (T̂R = E )

(Recall that T̂ is rank deficient, so T̂ T̂> 6= I.) Therefore T̂ (H −
T̂>E) = 0. That is, all the columns of (H − T̂>E) are parallel to T ,

and hence we have (H − T̂>E) = Tv> for some v ∈ R3.

Tv> =

 T1

T2

T3

 [
v1 v2 v3

]
⇒ H = T̂>E + Tv> for some v ∈ R3

Since R ∈ R3×3 is not necessarily in SO(3) these results hold for
E and F , where F = K−>EK−1 is the (uncalibrated) fundamental
matrix.

5.3. From Homography to the Essential Matrix

Given the homography H our task is to find E given two points p1 and p2

not on the plane P from which H was induced. We denote the corresponding
images of pj by xj

i in view i = 1, 2. This is illustrated by figure 1.
From item (a) we have

E = T̂H

where T ∼ l̂12l
2
2 and ‖T ‖ = 1.

We know that li2 ∼ x̂i
2Hxi

1, i = 1, 2. This is expressing the epipolar lines
l12 and l22 by crossing two points on each line, Hx1

1 with x1
2 and Hx2

1 with x2
2,

respectively. We also know that l̂12l
2
2 is the intersection of the two epipolar

lines and remember that all epipolar lines intersect at the epipole. All that
remains is to realize that the epipole is T up to a scale factor:

e2 = l̂12l
2
2 ∼ T

The above method can be called the 4 + 2 point algorithm since it uses
4 points on a plane and 2 points off the plane. Let’s look at an example.
In figure 2 we see that applying the homography matrix to points on the
left image and averaging the result with the right image gives us the third
image and it is seen that the coplanar points on the paper are correctly
transferred but the points not on the paper surface, like the mug, form a
“ghosted” image. Points that are farther away from the plane have more
disparity along the epipolar lines. This is known as plane-induced parallax.
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Figure 1. Figure from Ch. 5 of MaSKS. The original caption reads: “A
Homography H transfers two points x1

1 and x2
1 in the first image to two

points Hx1
1 and Hx2

1 on the same epipolar lines as the respective true
images x1

2 and x2
2 if the corresponding 3-D points p1 and p2 are not on

the plane P from which H is induced. ”

5.4. From the Essential Matrix to Homography

Now consider the opposite situation, where the essential matrix E and three
points (xi

1, x
i
2), i = 1, 2, 3 are given and we want to compute the homography.

The homography induced by the plane specified by the three points is

H = T̂>E + Tv>

where T can be found from E as previously shown and v ∈ R3 solves the
following system of equations

x̂i
2(T̂

>E + Tv>)xi
1 = 0 i = 1, 2, 3.

Notice that the above equation is similar to x̂i
2Hxi

1 = 0, except that H is
constrained to have the given form. The method for solving for v is left as
an exercise.

While one can find an H for any four points on the image (using the four
point algorithm), one can only guarantee H will map a point to an epipolar

line if it has the form T̂>E+Tv>. Such an H is “consistent” or “compatible”
with E. We will use this method for epipolar (stereo) rectification.
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Figure 2. Example of 4 + 2 point algorithm. (Figure from Hartley & Zisserman.)

5.5. Epipolar Rectification

In a stereo rectification problem we have two views of a scene. In order
to further simplify the search for corresponding points, it is desirable to
apply projective transformations to both images so that all epipolar lines
correspond to the horizontal scan lines. This entails finding two linear trans-
formations, say H1 and H2, that map the epipoles to infinity.

MaSKS Algorithm 11.9 shows us how to do epipolar rectification.

(a) Compute E (or F ) and e2. Finding epipoles from E can be done by
finding the right and left singular vectors of E.

(b) Map e2 to infinity to make epipolar lines parallel (Hartley, 1997)
using H2. There is a family of H2’s that will do this, parametrized
by v ∈ R3.

H = T̂>E + Tv>

Which one to choose? Find the H2 such that

H2e2 ∼
[

1 0 0
]>
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Figure 3. Example of Epipolar Rectification

and where H2 is as close as possible to a rigid body transformation.
So first define GT ∈ R3×3 as

GT =

 1 0 −ox

0 1 −oy

0 0 1


which translates the image center (ox, oy)

> to the origin. Now choose
GR ∈ SO(3) to do a rotation around the Z-axis so as to put the
translated epipole onto the x-axis

GRGT e2 =
[

xe 0 1
]>

Finally pick G ∈ R3×3 defined as

G =

 1 0 0
0 1 0

−1/xe 0 1


This sends the epipole to infinity. Choosing H2 = GGRGT ∈ R3×3

completes rectification for the second view.
(c) Find an H compatible with E (or F ). Here is where we use the

method of Section 5.4 for finding H from E. Use the the least squares

version of H = T̂>E+Tv> for multiple points and choose an H that
minimizes the distortion induced by the rectification transformation.
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(d) Compute the “matching” homography: H1 = H2H.
(e) Apply H1 and H2 to the left and right images, respectively.

Figure 3 shows the original and rectified versions of two images. It can
be seen that corresponding points in the two images are on horizontal scan
lines.

The above algorithm will not work if the camera is moving toward the
image, in which case the epipole is inside the image. Pollefeys has developed
methods to deal with that case.


