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LECTURE 7
Uncalibrated Epipolar Geometry

7.1. Uncalibrated camera or distorted space?

So far we have been assuming K = I, which corresponds to the calibrated
case. What happens when K 6= I? In 1992, Faugeras asked the question
“What can be seen in 3-D with an uncalibrated stereo rig?” That is, what
can we determine about the 3-D structure of the scene and the pose of the
camera in the uncalibrated case? Hartley also posed the same question. The
answer to the question is this: you can recover the structure of the scene in
3D (and the camera pose) up to a projective transformation.

There are in fact two equivalent ways to look at the problem setup:

• an uncalibrated camera moving in rectified space, or
• a calibrated camera moving in distorted space.

An uncalibrated camera with calibration matrix K, viewing points in a
calibrated (Euclidean) world and moving with parameters (R, T ) is equiv-
alent to a calibrated camera viewing points in distorted space moving with
parameters (KRK−1, KT ). This is illustrated in Figure 1. This distorted
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Figure 1. MaSKS Figure 6.4.

Figure 2. The Euclidean (left) and projective (right) structure of a house.

space is governed by the inner product

〈u, v〉S = u
⊤Sv, with S = K−T K−1 = (KK⊤)−1

We call S the metric of the space. In the Euclidean case, S = I and 〈u, v〉S =
u

⊤
v. Figure 2 shows the difference between the Euclidean structure and the

projective structure of a 3D object.
Recall the structure of the matrix K:

K =




fsx sθ ox

0 fsy oy

0 0 1




Its purpose is to map metric coordinates (unit of metres) into image coordi-
nates (unit of pixels). We use a prime to denote pixel coordinates:

x = K−1
x
′
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Applying the rotation matrix and the translation vector to some point X0

in Euclidean space, we get

X = RX0 + T

In the uncalibrated camera frame we have

KX = KRX0 + KT or X
′ = KRK−1

X
′

0
+ T

′

where X
′ = KX, T

′ = KT and X
′

0
= KX0.

Applying the image formation model using homogeneous coordinates, we
get

λx = KΠ0gX0

= K
[

I 0
] [

R T

0⊤ 1

]
X0

= KRX0 + KT

= KRK−1
X

′

0
+ KT

= Π0g
′
X

′

0

where g′ =

[
KRK−1

T
′

0⊤ 1

]
∈ R

4×4 is the distorted rigid transformation.

Summarizing, an uncalibrated camera moving in the calibrated space
(λx

′ = KΠ0gX0) is equivalent to a calibrated camera moving in a distorted
space (λx

′ = Π0g
′
X

′

0
).

7.2. Epipolar Constraint

Recall the form of the epipolar constraint in the calibrated case:

x
⊤

2
Ex1 = 0.

By direct substitution of the relation between metric and pixel coordinates
x = K−1

x
′, we get

x
′⊤

2
K−⊤T̂RK−1

x
′

1
= 0

The matrix in the middle is known as the Fundamental matrix,

F = K−⊤T̂RK−1 = K−⊤EK−1

Note that F reduces to the essential matrix when K = I.
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7.2.1. Coplanarity constraint

We can also examine uncalibrated epipolar geometry in terms of the copla-
narity constraint. The three vectors x

′

2
, T ′ = KT and KRx1 = KRK−1

x
′

1

in Figure 3 are coplanar. Hence their scalar triple product is 0:

x
′⊤

2
T̂ ′KRK−1

x
′

1
= 0

The matrix in the middle looks slightly different than the previous expression
for F , but we will see shortly that they are equivalent.

7.2.2. Algebraic derivation

Start with

λ2x2 = Rλ1x1 + T

with λx = X. Multiply both sides by K,

λ2Kx2 = KRλ1x1 + KT

or

λ2x
′

2
= KRK−1λ1x

′

1
+ T

′

Taking the dot product with T
′×x

′

2
= T̂ ′

x
′

2
and dropping scalar factors, we

get

x
′⊤

2
T̂ ′KRK−1

x
′

1
= 0

since the vector T̂ ′
x
′

2
is orthogonal to both T

′ and x
′

2
.

Figure 3. Uncalibrated epipolar geometry.
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From MaSKS Lemma 5.4, we have the identity K−T T̂K−1 = K̂T when
det(K) = +1. We can therefore write

F = K−T T̂RK−1 (uncalibrated camera in calibrated space)

= K−T T̂K−1KRK−1

= T̂ ′KRK−1 (calibrated camera in uncalibrated space)

7.2.3. Epipolar Lines and Epipoles

The bilinear relationship

x
′⊤

2
Fx

′

1
= 0

transfers a point in view 1 to a line in view 2. Equivalently, we may write

x
′⊤

2
Fx

′

1
= x

′⊤

2
l2 = 0

where l2 is the epipolar line in view 2. Similarly for l1, we have

l
⊤

1
x
′

1
= 0

Thus l2 = Fx
′

1
and l1 = F⊤

x
′

2
.

As with E, we can get the epipoles from the left and right null space of
F :

e
⊤

2
F = 0, Fe1 = 0

from which it follows

e2 = KT = T
′, e1 = KR⊤

T

7.3. Properties of F

Like the essential matrix, F has rank 2 since T̂ ′ is rank 2. The SVD of
F = UΣV ⊤ has Σ = diag{σ1, σ2, 0} with σ1 ≥ σ2. (In the case of E, we had
σ1 = σ2). This implies that any rank 2 matrix can be a fundamental matrix
for some stereo rig.

We can apply the 8-point algorithm to estimate F using a design matrix
χ ∈ R

n×9 with rows (carrier vectors) of the form

a = x
′

1
⊗ x

′

2

(7.1) a = [x′

1
x′

2
, x′

1
y′

2
, x′

1
, y′

1
x′

2
, y′

1
y′

2
, y′

1
, x′

2
, y′

2
, 1]⊤ ∈ R

9

All variables are primed, as they are in pixel coordinates. If we assume the
pixel coordinates are on the order of 102, then we encounter a practical prob-
lem: the entries in a range from 100 to 104, which makes χ ill-conditioned.
Hartley proposed a simple means of overcoming this problem.
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7.4. Hartley Normalization

In Hartley normalization we rescale the data using two matrices Hi, i = 1, 2,
so as to produce coordinates that make the design matrix well-conditioned.
We choose Hi such that the normalized coordinates x̃i = Hix

′

i have zero
mean and unit variance:

Hi =




1/σxi
0 −µxi

/σxi

0 1/σyi
−µyi

/σyi

0 0 1




In this expression, means and variances are given by:

µxi
=

1

n

n∑

j=1

xj
i σ2

xi
=

1

n

n∑

j=1

(xj
i )

2 − µ2

xi

µyi
=

1

n

n∑

j=1

yj
i σ2

yi
=

1

n

n∑

j=1

(yj
i )

2 − µ2

yi

Intuitively, Hi can be thought of as a guess at the calibration matrix, placing
the centroid of the coordinates at the image center, assuming zero skew, and
using the x and y variance to set the pixel aspect ratio.

After this transformation, we run the 8-point algorithm on x̃i, i = 1, 2,

to obtain the fundamental matrix F̃ for the normalized data. Finally we
obtain F by observing

x
′⊤

2
Fx

′

1
= x̃

⊤

2
H−⊤

2
FH−1

1︸ ︷︷ ︸
eF

x̃1 = 0

so F = H⊤

2
F̃H1


