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LECTURE 7
Uncalibrated Epipolar Geometry

7.1. Uncalibrated camera or distorted space?

So far we have been assuming K = I, which corresponds to the calibrated
case. What happens when K # I7 In 1992, Faugeras asked the question
“What can be seen in 3-D with an uncalibrated stereo rig?” That is, what
can we determine about the 3-D structure of the scene and the pose of the
camera in the uncalibrated case? Hartley also posed the same question. The
answer to the question is this: you can recover the structure of the scene in
3D (and the camera pose) up to a projective transformation.
There are in fact two equivalent ways to look at the problem setup:

e an uncalibrated camera moving in rectified space, or
e a calibrated camera moving in distorted space.

An uncalibrated camera with calibration matrix K, viewing points in a
calibrated (Euclidean) world and moving with parameters (R,T') is equiv-

alent to a calibrated camera viewing points in distorted space moving with
parameters (K RK~', KT). This is illustrated in Figure 1. This distorted
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Figure 1. MaSKS Figure 6.4.

Figure 2. The Euclidean (left) and projective (right) structure of a house.

space is governed by the inner product
(u,v)s =u'Sv, with S=K TK'=(KK")™

We call S the metric of the space. In the Euclidean case, S = I and (u, v)g =
u'v. Figure 2 shows the difference between the Euclidean structure and the
projective structure of a 3D object.

Recall the structure of the matrix K:

fsx Sg O
K = 0 fsy oy
0 0 1

Its purpose is to map metric coordinates (unit of metres) into image coordi-
nates (unit of pixels). We use a prime to denote pixel coordinates:

x=K 'z
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Applying the rotation matrix and the translation vector to some point X
in Euclidean space, we get

X =RX,+T
In the uncalibrated camera frame we have
KX =KRXy+KT or X'=KRK'X,+T

where X' = KX, T' = KT and X = KX,.
Applying the image formation model using homogeneous coordinates, we
get

Ax = KHQQXQ

R T
= KRX,+ KT
= KRK'X,+ KT
= Hog/X6
_1 /
where ¢’ = [ K%{r( 111 } € R*¥* is the distorted rigid transformation.

Summarizing, an uncalibrated camera moving in the calibrated space
(Ax’ = KllpgX ) is equivalent to a calibrated camera moving in a distorted
space (A’ = Ig' Xy).

7.2. Epipolar Constraint

Recall the form of the epipolar constraint in the calibrated case:
a:QTEazl = 0.

By direct substitution of the relation between metric and pixel coordinates
=K 'x/, we get

x) K- TTRK '@} =0
The matrix in the middle is known as the Fundamental matrix,
F=K "TRK'=K "TEK™

Note that F reduces to the essential matrix when K = I.
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7.2.1. Coplanarity constraint

We can also examine uncalibrated epipolar geometry in terms of the copla-
narity constraint. The three vectors x}, T' = KT and KRz, = KRK '}
in Figure 3 are coplanar. Hence their scalar triple product is 0:

o) T'"KRK 'a) =0
The matrix in the middle looks slightly different than the previous expression
for F', but we will see shortly that they are equivalent.

7.2.2. Algebraic derivation
Start with
>\2.’,C2 = R)\lCCl + T
with Ax = X. Multiply both sides by K,
)\2K(L‘2 = KR)\liBl + KT
or
Noxh = KRK'\iz) + T

Taking the dot product with T x @, = T @), and dropping scalar factors, we
get

o) T'KRK 'z, =0

since the vector 7" @), is orthogonal to both T" and xf,.

(KRK-'. KT)

Figure 3. Uncalibrated epipolar geometry.
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From MaSKS Lemma 5.4, we have the identity K~7TK~! = KT when
det(K) = +1. We can therefore write

F = K TTRK™' (uncalibrated camera in calibrated space)
= K TTK'KRK™

— T'KRK™! (calibrated camera in uncalibrated space)

7.2.3. Epipolar Lines and Epipoles
The bilinear relationship
x) Fx) =0

transfers a point in view 1 to a line in view 2. Equivalently, we may write

xh Fa), = x) 1, =0
where [, is the epipolar line in view 2. Similarly for I;, we have

Iz, =0
Thus I, = Fxl and I} = F'x),.
As with F, we can get the epipoles from the left and right null space of

F:

e, =0, Fe =0
from which it follows

eo=KT =T, e =KR'T

7.3. Properties of I

Like the essential matrix, F' has rank 2 since T' is rank 2. The SVD of
F =UXVT has ¥ = diag{o1, 09,0} with oy > 0. (In the case of E, we had
01 = 03). This implies that any rank 2 matrix can be a fundamental matrix
for some stereo rig.

We can apply the 8-point algorithm to estimate I’ using a design matrix
x € R™? with rows (carrier vectors) of the form

0 /
a=x; Qa,

(7.1) a = (7)), 21yy, @), Y125, Uiy, v, 05,95, 1] € R

All variables are primed, as they are in pixel coordinates. If we assume the
pixel coordinates are on the order of 10?2, then we encounter a practical prob-
lem: the entries in @ range from 10° to 10*, which makes Y ill-conditioned.
Hartley proposed a simple means of overcoming this problem.
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7.4. Hartley Normalization

In Hartley normalization we rescale the data using two matrices H;,i = 1, 2,
so as to produce coordinates that make the design matrix well-conditioned.
We choose H; such that the normalized coordinates ; = H;x) have zero
mean and unit variance:
1/Uxi 0 _sz'/o_l‘z‘
H; = 0 1oy, —py /oy,
0 0 1

In this expression, means and variances are given by:

1 — 1 —
_ J 2 7\2 2
Mxi—g E T; %i—g E (z}) = My,
j=1 j=1

1~ 1<,
me==D w0 == W) -,
j=1 i=1

Intuitively, H; can be thought of as a guess at the calibration matrix, placing
the centroid of the coordinates at the image center, assuming zero skew, and
using the x and y variance to set the pixel aspect ratio.

After this transformation, we run the 8-point algorithm on z;, i = 1,2,
to obtain the fundamental matrix F' for the normalized data. Finally we
obtain F' by observing

x) Fa) = %) Hy | FH{ %, = 0
f

F
so F = H] FH,



