CSE 252B: Computer Vision II

Lecturer: Serge Belongie Scribe: Smriti Yamini

LECTURE 7 Uncalibrated Epipolar Geometry

7.1. Uncalibrated camera or distorted space?

So far we have been assuming $K=I$, which corresponds to the calibrated case. What happens when $K \neq I$? In 1992, Faugeras asked the question "What can be seen in 3-D with an uncalibrated stereo rig?" That is, what can we determine about the 3-D structure of the scene and the pose of the camera in the uncalibrated case? Hartley also posed the same question. The answer to the question is this: you can recover the structure of the scene in 3D (and the camera pose) up to a projective transformation.

There are in fact two equivalent ways to look at the problem setup:

- an uncalibrated camera moving in rectified space, or
- a calibrated camera moving in distorted space.

An uncalibrated camera with calibration matrix K, viewing points in a calibrated (Euclidean) world and moving with parameters (R, \boldsymbol{T}) is equivalent to a calibrated camera viewing points in distorted space moving with parameters $\left(K R K^{-1}, K \boldsymbol{T}\right)$. This is illustrated in Figure 1. This distorted

[^0]April 19, 2004

Figure 1. MaSKS Figure 6.4.

Figure 2. The Euclidean (left) and projective (right) structure of a house.
space is governed by the inner product

$$
\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{S}=\boldsymbol{u}^{\top} S \boldsymbol{v}, \quad \text { with } \quad S=K^{-T} K^{-1}=\left(K K^{\top}\right)^{-1}
$$

We call S the metric of the space. In the Euclidean case, $S=I$ and $\langle\boldsymbol{u}, \boldsymbol{v}\rangle_{S}=$ $\boldsymbol{u}^{\top} \boldsymbol{v}$. Figure 2 shows the difference between the Euclidean structure and the projective structure of a 3D object.

Recall the structure of the matrix K :

$$
K=\left[\begin{array}{ccc}
f s_{x} & s_{\theta} & o_{x} \\
0 & f s_{y} & o_{y} \\
0 & 0 & 1
\end{array}\right]
$$

Its purpose is to map metric coordinates (unit of metres) into image coordinates (unit of pixels). We use a prime to denote pixel coordinates:

$$
\boldsymbol{x}=K^{-1} \boldsymbol{x}^{\prime}
$$

Applying the rotation matrix and the translation vector to some point \boldsymbol{X}_{0} in Euclidean space, we get

$$
\boldsymbol{X}=R \boldsymbol{X}_{0}+\boldsymbol{T}
$$

In the uncalibrated camera frame we have

$$
K \boldsymbol{X}=K R \boldsymbol{X}_{0}+K \boldsymbol{T} \quad \text { or } \quad \boldsymbol{X}^{\prime}=K R K^{-1} \boldsymbol{X}_{0}^{\prime}+\boldsymbol{T}^{\prime}
$$

where $\boldsymbol{X}^{\prime}=K \boldsymbol{X}, \boldsymbol{T}^{\prime}=K \boldsymbol{T}$ and $\boldsymbol{X}_{0}^{\prime}=K \boldsymbol{X}_{0}$.
Applying the image formation model using homogeneous coordinates, we get

$$
\begin{aligned}
\lambda \boldsymbol{x} & =K \Pi_{0} g \boldsymbol{X}_{0} \\
& =K\left[\begin{array}{ll}
I & \mathbf{0}
\end{array}\right]\left[\begin{array}{cc}
R & \boldsymbol{T} \\
\mathbf{0}^{\top} & 1
\end{array}\right] \boldsymbol{X}_{0} \\
& =K R \boldsymbol{X}_{0}+K \boldsymbol{T} \\
& =K R K^{-1} \boldsymbol{X}_{0}^{\prime}+K \boldsymbol{T} \\
& =\Pi_{0} g^{\prime} \boldsymbol{X}_{0}^{\prime}
\end{aligned}
$$

where $g^{\prime}=\left[\begin{array}{cc}K R K^{-1} & \boldsymbol{T}^{\prime} \\ \mathbf{0}^{\top} & 1\end{array}\right] \in \mathbb{R}^{4 \times 4}$ is the distorted rigid transformation.
Summarizing, an uncalibrated camera moving in the calibrated space ($\lambda \boldsymbol{x}^{\prime}=K \Pi_{0} g \boldsymbol{X}_{0}$) is equivalent to a calibrated camera moving in a distorted space $\left(\lambda \boldsymbol{x}^{\prime}=\Pi_{0} g^{\prime} \boldsymbol{X}_{0}^{\prime}\right)$.

7.2. Epipolar Constraint

Recall the form of the epipolar constraint in the calibrated case:

$$
\boldsymbol{x}_{2}^{\top} E \boldsymbol{x}_{1}=0
$$

By direct substitution of the relation between metric and pixel coordinates $\boldsymbol{x}=K^{-1} \boldsymbol{x}^{\prime}$, we get

$$
\boldsymbol{x}_{2}^{\prime \top} K^{-\top} \widehat{T} R K^{-1} \boldsymbol{x}_{1}^{\prime}=0
$$

The matrix in the middle is known as the Fundamental matrix,

$$
F=K^{-\top} \widehat{T} R K^{-1}=K^{-\top} E K^{-1}
$$

Note that F reduces to the essential matrix when $K=I$.

7.2.1. Coplanarity constraint

We can also examine uncalibrated epipolar geometry in terms of the coplanarity constraint. The three vectors $\boldsymbol{x}_{2}^{\prime}, \boldsymbol{T}^{\prime}=K \boldsymbol{T}$ and $K R \boldsymbol{x}_{1}=K R K^{-1} \boldsymbol{x}_{1}^{\prime}$ in Figure 3 are coplanar. Hence their scalar triple product is 0 :

$$
\boldsymbol{x}_{2}^{\prime \top} \widehat{T}^{\prime} K R K^{-1} \boldsymbol{x}_{1}^{\prime}=0
$$

The matrix in the middle looks slightly different than the previous expression for F, but we will see shortly that they are equivalent.

7.2.2. Algebraic derivation

Start with

$$
\lambda_{2} \boldsymbol{x}_{2}=R \lambda_{1} \boldsymbol{x}_{1}+\boldsymbol{T}
$$

with $\lambda \boldsymbol{x}=\boldsymbol{X}$. Multiply both sides by K,

$$
\lambda_{2} K \boldsymbol{x}_{2}=K R \lambda_{1} \boldsymbol{x}_{1}+K \boldsymbol{T}
$$

or

$$
\lambda_{2} \boldsymbol{x}_{2}^{\prime}=K R K^{-1} \lambda_{1} \boldsymbol{x}_{1}^{\prime}+\boldsymbol{T}^{\prime}
$$

Taking the dot product with $\boldsymbol{T}^{\prime} \times \boldsymbol{x}_{2}^{\prime}=\widehat{T}^{\prime} \boldsymbol{x}_{2}^{\prime}$ and dropping scalar factors, we get

$$
\boldsymbol{x}_{2}^{\prime \top} \widehat{T}^{\prime} K R K^{-1} \boldsymbol{x}_{1}^{\prime}=0
$$

since the vector $\widehat{T}^{\prime} \boldsymbol{x}_{2}^{\prime}$ is orthogonal to both \boldsymbol{T}^{\prime} and $\boldsymbol{x}_{2}^{\prime}$.

Figure 3. Uncalibrated epipolar geometry.

From MaSKS Lemma 5.4, we have the identity $K^{-T} \widehat{T} K^{-1}=\widehat{K T}$ when $\operatorname{det}(K)=+1$. We can therefore write

$$
\begin{aligned}
F & =K^{-T} \widehat{T} R K^{-1} \quad \text { (uncalibrated camera in calibrated space) } \\
& =K^{-T} \widehat{T} K^{-1} K R K^{-1} \\
& =\widehat{T}^{\prime} K R K^{-1} \quad(\text { calibrated camera in uncalibrated space })
\end{aligned}
$$

7.2.3. Epipolar Lines and Epipoles

The bilinear relationship

$$
\boldsymbol{x}_{2}^{\prime \top} F \boldsymbol{x}_{1}^{\prime}=0
$$

transfers a point in view 1 to a line in view 2. Equivalently, we may write

$$
\boldsymbol{x}_{2}^{\prime \top} F \boldsymbol{x}_{1}^{\prime}=\boldsymbol{x}_{2}^{\prime \top} \boldsymbol{l}_{2}=0
$$

where \boldsymbol{l}_{2} is the epipolar line in view 2 . Similarly for \boldsymbol{l}_{1}, we have

$$
\boldsymbol{l}_{1}^{\top} \boldsymbol{x}_{1}^{\prime}=0
$$

Thus $\boldsymbol{l}_{2}=F \boldsymbol{x}_{1}^{\prime}$ and $\boldsymbol{l}_{1}=F^{\top} \boldsymbol{x}_{2}^{\prime}$.
As with E, we can get the epipoles from the left and right null space of F :

$$
\boldsymbol{e}_{2}^{\top} F=\mathbf{0}, \quad F \boldsymbol{e}_{1}=\mathbf{0}
$$

from which it follows

$$
\boldsymbol{e}_{2}=K \boldsymbol{T}=\boldsymbol{T}^{\prime}, \quad \boldsymbol{e}_{1}=K R^{\top} \boldsymbol{T}
$$

7.3. Properties of F

Like the essential matrix, F has rank 2 since \widehat{T}^{\prime} is rank 2 . The SVD of $F=U \Sigma V^{\top}$ has $\Sigma=\operatorname{diag}\left\{\sigma_{1}, \sigma_{2}, 0\right\}$ with $\sigma_{1} \geq \sigma_{2}$. (In the case of E, we had $\sigma_{1}=\sigma_{2}$). This implies that any rank 2 matrix can be a fundamental matrix for some stereo rig.

We can apply the 8-point algorithm to estimate F using a design matrix $\chi \in \mathbb{R}^{n \times 9}$ with rows (carrier vectors) of the form

$$
\begin{gather*}
\boldsymbol{a}=\boldsymbol{x}_{1}^{\prime} \otimes \boldsymbol{x}_{2}^{\prime} \\
\boldsymbol{a}=\left[x_{1}^{\prime} x_{2}^{\prime}, x_{1}^{\prime} y_{2}^{\prime}, x_{1}^{\prime}, y_{1}^{\prime} x_{2}^{\prime}, y_{1}^{\prime} y_{2}^{\prime}, y_{1}^{\prime}, x_{2}^{\prime}, y_{2}^{\prime}, 1\right]^{\top} \in \mathbb{R}^{9} \tag{7.1}
\end{gather*}
$$

All variables are primed, as they are in pixel coordinates. If we assume the pixel coordinates are on the order of 10^{2}, then we encounter a practical problem: the entries in \boldsymbol{a} range from 10^{0} to 10^{4}, which makes χ ill-conditioned. Hartley proposed a simple means of overcoming this problem.

7.4. Hartley Normalization

In Hartley normalization we rescale the data using two matrices $H_{i}, i=1,2$, so as to produce coordinates that make the design matrix well-conditioned. We choose H_{i} such that the normalized coordinates $\widetilde{\boldsymbol{x}}_{i}=H_{i} \boldsymbol{x}_{i}^{\prime}$ have zero mean and unit variance:

$$
H_{i}=\left[\begin{array}{ccc}
1 / \sigma_{x_{i}} & 0 & -\mu_{x_{i}} / \sigma_{x_{i}} \\
0 & 1 / \sigma_{y_{i}} & -\mu_{y_{i}} / \sigma_{y_{i}} \\
0 & 0 & 1
\end{array}\right]
$$

In this expression, means and variances are given by:

$$
\begin{array}{ll}
\mu_{x_{i}}=\frac{1}{n} \sum_{j=1}^{n} x_{i}^{j} & \sigma_{x_{i}}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(x_{i}^{j}\right)^{2}-\mu_{x_{i}}^{2} \\
\mu_{y_{i}}=\frac{1}{n} \sum_{j=1}^{n} y_{i}^{j} & \sigma_{y_{i}}^{2}=\frac{1}{n} \sum_{j=1}^{n}\left(y_{i}^{j}\right)^{2}-\mu_{y_{i}}^{2}
\end{array}
$$

Intuitively, H_{i} can be thought of as a guess at the calibration matrix, placing the centroid of the coordinates at the image center, assuming zero skew, and using the x and y variance to set the pixel aspect ratio.

After this transformation, we run the 8-point algorithm on $\widetilde{\boldsymbol{x}}_{i}, i=1,2$, to obtain the fundamental matrix \widetilde{F} for the normalized data. Finally we obtain F by observing

$$
\boldsymbol{x}_{2}^{\prime \top} F \boldsymbol{x}_{1}^{\prime}=\widetilde{\boldsymbol{x}}_{2}^{\top} \underbrace{H_{2}^{-\top} F H_{1}^{-1}}_{\widetilde{F}} \widetilde{\boldsymbol{x}}_{1}=0
$$

so $F=H_{2}^{\top} \widetilde{F} H_{1}$

[^0]: $\overline{{ }^{1} \text { Department }}$ of Computer Science and Engineering, University of California, San Diego.

