
CSE 252B: Computer Vision II

Lecturer: Serge Belongie
Scribes: Paul Hammon and Evan Schumacher

LECTURE 8
Projective Reconstruction

8.1. The Fundamental Matrix vs. the Essential Matrix

The fundamental matrix, F , is an extension of the the essential matrix, E,
to the case of an uncalibrated camera. The epipolar constraint that gives
rise to F is also an extension of the epipolar constraint that that leads to E.
The difference is that in the uncalibrated case we must take in to account
the intrinsic camera parameters K which result in the “distorted space.” As
seen in the last lecture, F is given by:

(8.1) F = K−T T̂RK−1 = T̂ ′KRK−1

where T ′ = KT . Note that if K = I then F = E.
We can use the 8-point algorithm to get F as we did with E, but unfor-

tunately we cannot simply extract R,K,T from F as we do with E. What
we would like is to be able to get a projection matrix, Π, from F such that:

F = T̂ ′KRK−1 7→ Π = [KRK−1, KT ]

The reason this is not possible can be seen by comparing the degrees of free-
dom (DOF) in F with the degrees of freedom required to represent R,K,T .
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To express R,K,T we need 10 DOF, 2 for translation, 5 for intrinsic param-
eters, and 3 for rotation. F has nine values specified up to a scale factor, so
it has at most only 8 DOF (not taking into account its special structure), 2
DOF short of being able to provide R,K,T .

8.1.1. Ambiguities and constraints in image formation

When given an equation involving matrix products it is possible for ambigui-
ties to crop up because the product can be interspersed with a multiplication
of a matrix and its inverse. For example,

M = BC = (BH−1)(HC) = B′C ′

In this case (B′, C ′) and (B, C) cannot be distinguished using the measure-
ment M . This is an issue for us since the equation that relates image and
real world coordinates

(8.2) λx′ = KΠ0gX

could hide three such ambiguities, as evidenced by the following:

(8.3) λx′ = KΠ0gX = KR−1
0 R0Π0H

−1Hgg−1
w gwX

In this case, R0 and gw can be fixed by choosing Euclidean coordinate frames.
However, H causes ambiguity to the projection matrix Π, leading to a dis-
tortion of the world coordinate frame that X lives in, which distorts our
reconstruction. Fixing this distortion is known as “rectification,” and is
equivalent to identifying the metric of the space, or “calibrating” the space.
Being able to find H corresponds to discovering the metric of the space as
in:

〈u, v〉S = u>Sv.

This is analogous to calibrating the camera to provide a rectified image.

8.2. Stratified Reconstruction

There are different levels of reconstruction of a scene possible as shown in
figure 1. Without knowing K we can only get the projective reconstruction,
but this can be upgraded to affine (parallelism preserved) and Euclidean
(parallelism and orthogonality preserved) reconstructions. Today we are
answering the question of how do we get the projective reconstruction given a
set of corresponding points in two views and the camera projection matrices
Πip. Note: The i in the subscript represents which camera view we are
referencing, and the p stands for projective. Without loss of generality, and
to simplify the math, we use the following convention:

Π1p = [I,0]
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Figure 1. Three cases of reconstruction (from left to right): Projective,
Affine, and Euclidean, from MaSKS fig 6.10

8.2.1. Projective Reconstruction

Given a set of point correspondences between two views {(x′1, x′2)} we can
get the Projective Structure Xp by using the following technique: first get
F from the point correspondences, then use F to get Π2p (remember Π1p =
[I, 0]), and finally triangulate to get Xp. One issue that must be dealt with
is that, as stated earlier, we cannot uniquely get K,R,T from F . However,
the following theorem guarantees that all instances of Π2p’s that come from
a given F are related to one another by a projective transform of the form
Hp ∈ GL(4).

Theorem 8.4. (MaSKS Theorem 6.3): (Π1p, Π2p) and (Π1p, Π̃2p) are two
pairs of projection matrices that yield the same fundamental matrix F iff
there exists a nonsingular transformation matrix Hp such that Π̃2p ∼ Π2pH

−1
p

or equivalently, Π2p ∼ Π̃2pHp.

Proof. Let Π2p = [C, c], Π̃2p = [B, b], where C, B ∈ R3×3 and b, c ∈ R3. If

both Π2p and Π̃2p give rise to the same F , then

(8.5) ĉC ∼ b̂B

Because c>ĉ = 0> and b>b̂ = 0>, c and b span the left nullspaces of the
lefthand and righthand sides, respectively, this implies that c ∼ b. Thus,

(8.6) ĉC = kĉB or b̂C = k′b̂B

If ĉ were rank 3 and k = 1, then this would imply that C = B. It has
been shown previously, however, that ĉ is rank 2, and for a rank-deficient
matrices ĉC = ĉB ; C = B.

Since ĉ has c in its nullspace, and since b ∼ c, one can show that

(8.7) C ∼ B + bv> where v ∈ R3
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This can be re-written as

(8.8) [C, c]︸ ︷︷ ︸
Π2p

∼ [B, b]︸ ︷︷ ︸
Π̃2p

[
I 0

v> v4

]
︸ ︷︷ ︸

Hp

Thus, we have shown that Π2p ∼ Π̃2pHp for Hp of the form in the above
equation. �

8.2.2. Canonical Choices of the Projection Matrices

We want to fix the choice of Hp such that F only maps to one pair (Π1p, Π2p)
with no parametrization in terms of v or v4. The canonical choice for these
two projection matrices is stated below and then expanded upon later.

(8.9) F 7→ Π1p = [I,0] , Π2p =
[
T̂ ′>F, T ′

]
where T ′ = KT and ‖T ′‖ = 1. This choice of projection matrices depends

only on F because T ′> is related to F by T ′>F = 0. (Recall T ′ ∼ e2, the
epipole in the 2nd view.)

Now let’s examine whether this projection will give back F . We know
that F is constructed from hatting the rightmost column of Π2p and premul-
tiplying it by the leading 3× 3 block as follows:[

T̂ ′>F, T ′
]
→ T̂ ′T̂ ′>F

Note that T̂ ′T̂ ′> = I−T ′T ′> when ‖T ′‖ = 1 (see MaSKS exercise 5.3). This
implies that:

T̂ ′T̂ ′>F =
(
I − T ′T ′>

)
F = F − T ′T ′>F = F − T ′0 = F

8.2.3. Determination of Canonical Projection Matrices

Now we will examine how to do the projective reconstruction, which is the
process from which the 3D coordinates, Xp, are recovered from pairs of
corresponding uncalibrated image points, x′1 and x′2.

Using Π1p and Π2p as described previously, we have:

λ1x
′
1 = Π1pXp = [I,0] Xp(8.10)

λ2x
′
2 = Π2pXp =

[
T̂ ′>F, T ′

]
Xp(8.11)

Premultiplying by x̂′1 and x̂′2 in the previous equations yields x̂′iΠipXp =

0 for i = 1, 2. For two corresponding points x′1 = [x1, y1, 1]> and x′2 =
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Figure 2. An illustration of how the true Euclidean structure might
be skewed in the process of recovering its projective structure in the
uncalibrated case. (Figure from MaSKS p.191.)

[x2, y2, 1]>, where Πip is written as a set of three row vectors [π1
i , π

2
i , π

3
i ]
>
,

these constraints result in four equations:(
x1π

3>
1

)
Xp = π1>

1 Xp(8.12) (
y1π

3>
1

)
Xp = π2>

1 Xp(8.13) (
x2π

3>
2

)
Xp = π1>

2 Xp(8.14) (
y2π

3>
2

)
Xp = π2>

2 Xp(8.15)

Which can be re-written as a homogeneous linear system MXp = 0,
M ∈ R4×4:

(8.16)


x1π

3>
1 − π1>

1

y1π
3>
1 − π2>

1

x2π
3>
2 − π1>

2

y2π
3>
2 − π2>

2

Xp = 0

We can solve for Xp using the SVD as described in previous lectures.1 An
example of what the projective structure of a scene might look like can be
seen in Figure 2. Note, however, that this only works exactly for the case
where there is no noise. In particular, the smallest singular value of M will
only be zero in the exact case. In the case of noisy data, this initialization can
serve as a starting point for a nonlinear optimization method. See MaSKS
Example 6.4 on p. 190 for a numerical example of this process.

1Recall that we made a big deal about the twisted pair ambiguity in the case of calibrated
reconstruction, but in the uncalibrated case we don’t. Why is that?


