CSE 252B: Computer Vision II

Lecturer: Serge Belongie
Scribe': Martin Stiaszny and Dana Qu

LECTURE 10
Camera Calibration

10.1. Introduction

Just like the mythical frictionless plane, in real life we will seldom, if ever,
encounter a truly ideal pinhole camera. Real cameras have focal lengths
that can change or get knocked out of adjustment. Thus, in any real system,
the first thing one must usually do is camera calibration. We deal with two
ways of doing so in this lecture. The first is calibration from special camera
motions (such as pure translation or pure rotation), and the second is by
the use of a calibration “rig” — i.e., an object with known and desirable
properties placed in the scene.

10.2. Radial Distortion

Real cameras have lenses, and lenses have imperfections. Usually, the most
significant kind of distortion is radial lens distortion, which increases as lens
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Figure 1. Example of radially distorted image (left) and its rectified
version (right). (From MaSKS)

size and cost decrease. We can model radial distortion as
x=c+ f(r)(xqs — ¢
f(r) =14 ar + ayr* + azr® + agr*

where x4 = (z4,y4)' is the distorted image coordinates, r? = ||z4— ¢l|?, and
¢ = (cz,c,)" is the center of the distortion (which is not necessarily the center
of the image). You can think of applying f(r) in concentric circles. Solving
for a; through a4 and c is a non-linear optimization problem that will not
be dealt with in this lecture, but there are several good toolboxes that can
take care of it; see the links on course webpage. However, regardless of the
method you eventually use, it is very important to do distortion correction.
Figure 1 shows a vivid illustration of this.

)T

10.3. Calibration from Pure Rotation'
(MaSKS example 6.10) Recall the general image formation equation:
Noxhy = KRK '\ix), + KT
Under pure rotation, T' = 0, so
Moxh = KRK '\jx)

for some A\j, Ay € R,. The 3 x 3 matrix KRK ! is the uncalibrated coun-
terpart to the rotational homography. As in the calibrated case, we can

IThis would be applicable using a Pan-Tilt-Zoom (PTZ) camera with fixed zoom, for
example.
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eliminate the unknown depths algebraically by crossing both sides with x:
Aoy ~ KRK 'z = o, KRK 'z, =0
Letting C = KRK !, we can estimate C using the 4 point algorithm. Hart-

ley’s calibration method requires two such C’s for R’s around different axes.

Theorem 10.1. (MaSKS Theorem 6.9) Given C; = KR; K™, fori = 1,2
where R; = ef% with ||| =1 and 6 # km, k € Z then S~ — CS™1CT =0
(with S~ = KK ") has a unique solution for S~ iff p, and p, are linearly
independent.

Stated informally, this theorem says if you take two images with “ran-
dom” camera rotations, you can estimate K.

Algorithm

Given C;, 1 =1,...,m for m > 2, we can rewrite the m equations
STt —cs7io =0

as

xs=0
where y € R is the design matrix and s € R® contains the stacked upper
triangular entries of the symmetric matrix S—!. Since S~! is symmetric, we
can recover the remaining 3 entries using the 6 entries in s. As usual, recover
s using the SVD and reshape it to form S~!. Then you can get K from the
Cholesky decomposition of S—1.

10.4. Calibration using a rig

We now look at how to recover the camera calibration parameters from a
calibration object (or “rig”). We will look at two cases: a single view of a
cube and multiple views of a plane.

10.4.1. Example 1: Checkerboard Covered Cube (MaSKS 6.5.2)

Figure 2 shows a checkerboard-covered cube for which all the geometry is
known. Let X = (X,Y,Z,1)" be the the coordinates of some known point
p on the rig. Its image @’ is given by
A =11X = KIl,gX
Let IT;, IT,, IT; € R* denote the rows of II:
Hi 3x4
X
IT= ng eR
E
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Figure 2. Cube-shaped calibration rig (from MaSKS).

Then for each point p’ on the rig, we can write

Tey] [m
A’ (yz), = H;Tr 7i
1 1. .

The third coordinate implies that A\’ = IT; X*. From this, we get the two
equations:
@) X) =T X and ()1 X') = 1T} X°
Note that X Y* Zi 2V and y” are all known. We can put this into the
standard form
MIT* =0

with TT* = TI(:) and M € R*!2. (The exact entries of M are left as an
exercise.) Using the SVD, we can get a linear (suboptimal) estimate of
II. As a sidenote, the process of recovering Il from an object with known
geometry is known as resection.

Note that [T = K[R,T] = [KR, KT)]. The first 3x 3 block of IT is KR, so
use the QR decomposition to separate K from R. Finally, T = K 'TI(:, 4).
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Figure 3. Two views of a planar calibration grid (from MaSKS).

Note that this method breaks down if the calibration pattern is planar.
Since planar calibration grids are much easier to construct, the next example
addresses that case.

10.4.2. Example 2: planar checkerboard?

Consider the planar checkerboard shown in Figure 3. For simplicity, choose
the world reference frame to lie on the board. Then all points have the form
X = (X,Y,0,1)T and the Z axis is the normal vector of the plane. This
gives rise to the following simplified relation between the world coordinates
and image coordinates:

x X
My |=K[r rn T]|Y
1 1

where 7; = R(:,4). The matrix H = K(r1, 7, T) € R*3 is the homography
from the checkerboard to the image plane:

X
e =H | Y
1

Using the standard trick of multiplying both sides by Z' to eliminate un-
known depth gives us
X
cH|Y | =0
1

2See the Matlab calibration toolbox from Jean-Yves Bouguet.
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From this we can solve for H using the 4 point algorithm. The first two
columns are [hy, hy] ~ K[ry, 73] or K7'[hy, hy] ~ [r1,75]. Since r; and 7,
are orthogonal (b/c R € SO(3)), their inner product with each other must
be zero,
hiK "TK'hy,=0

and their inner product with themselves must be one,

hiK""TK'h) =h,K " "TK'hy, =1
These equations are quadratic in the entries of K (b/c K is multiplied by
KT). But, if we neglect the structure of S = (KK )™}, we can solve for S
linearly and factor it to get K.

It is often safe to assume that the cameras have zero skew, i.e., sy = 0.
When this is true, we have the additional constraint that so elTSeQ = 0,
where e; = (1,0,0)" and e; = (0,1,0)". (Note that these e;’s are not
epipoles; this is MaSKS’s convention for unit vectors.)



