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LECTURE 10
Camera Calibration

10.1. Introduction

Just like the mythical frictionless plane, in real life we will seldom, if ever,
encounter a truly ideal pinhole camera. Real cameras have focal lengths
that can change or get knocked out of adjustment. Thus, in any real system,
the first thing one must usually do is camera calibration. We deal with two
ways of doing so in this lecture. The first is calibration from special camera
motions (such as pure translation or pure rotation), and the second is by
the use of a calibration “rig” – i.e., an object with known and desirable
properties placed in the scene.

10.2. Radial Distortion

Real cameras have lenses, and lenses have imperfections. Usually, the most
significant kind of distortion is radial lens distortion, which increases as lens
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Figure 3.9. Left: image taken by a camera with a short focal length; note that the straight
lines in the scene become curved on the image. Right: image with radial distortion
compensated for.

can be recovered from multiple corresponding images: a simultaneous estimation
of 3-D geometry and radial distortion can be found in the more recent work of
[Zhang, 1996, Stein, 1997, Fitzgibbon, 2001]. For more sophisticated lens aber-
ration models, the reader can refer to classical references in geometric optics given
at the end of this chapter.

3.3.4 Image, preimage, and coimage of points and lines

The preceding sections have formally established the notion of a perspective
image of a point. In principle, this allows us to define an image of any other
geometric entity in 3-D that can be defined as a set of points (e.g., a line or a
plane). Nevertheless, as we have seen from the example of spherical projection,
even for a point, there exist seemingly different representations for its image: two
vectors x ∈ R3 and y ∈ R3 may represent the same image point as long as they
are related by a nonzero scalar factor; i.e. x ∼ y (as a result of different choices in
the imaging surface). To avoid possible confusion that can be caused by such dif-
ferent representations for the same geometric entity, we introduce a few abstract
notions related to the image of a point or a line.

Consider the perspective projection of a straight line L in 3-D onto the 2-D
image plane (Figure 3.10). To specify a line in 3-D, we can typically specify a
point po, called the base point, on the line and specify a vector v that indicates the
direction of the line. Suppose that Xo = [Xo, Yo, Zo, 1]T are the homogeneous
coordinates of the base point po and V = [V1, V2, V3, 0]T ∈ R4 is the homo-
geneous representation of v, relative to the camera coordinate frame. Then the
(homogeneous) coordinates of any point on the line L can be expressed as

X = Xo + µV , µ ∈ R.

Figure 1. Example of radially distorted image (left) and its rectified
version (right). (From MaSKS)

size and cost decrease. We can model radial distortion as

x = c + f(r)(xd − c)

f(r) = 1 + ar + a2r
2 + a3r

3 + a4r
4

where xd = (xd, yd)
> is the distorted image coordinates, r2 = ‖xd−c‖2, and

c = (cx, cy)
> is the center of the distortion (which is not necessarily the center

of the image). You can think of applying f(r) in concentric circles. Solving
for a1 through a4 and c is a non-linear optimization problem that will not
be dealt with in this lecture, but there are several good toolboxes that can
take care of it; see the links on course webpage. However, regardless of the
method you eventually use, it is very important to do distortion correction.
Figure 1 shows a vivid illustration of this.

10.3. Calibration from Pure Rotation1

(MaSKS example 6.10) Recall the general image formation equation:

λ2x
′
2 = KRK−1λ1x

′
1 + KT

Under pure rotation, T = 0, so

λ2x
′
2 = KRK−1λ1x

′
1

for some λ1, λ2 ∈ R+. The 3 × 3 matrix KRK−1 is the uncalibrated coun-
terpart to the rotational homography. As in the calibrated case, we can

1This would be applicable using a Pan-Tilt-Zoom (PTZ) camera with fixed zoom, for
example.
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eliminate the unknown depths algebraically by crossing both sides with x′2:

λ2x
′
2 ∼ KRK−1x′1 =⇒ x̂′2KRK−1x′1 = 0

Letting C = KRK−1, we can estimate C using the 4 point algorithm. Hart-
ley’s calibration method requires two such C’s for R’s around different axes.

Theorem 10.1. (MaSKS Theorem 6.9) Given Ci = KRiK
−1, for i = 1, 2

where Ri = e bµiθi with ‖µi‖ = 1 and θ 6= kπ, k ∈ Z then S−1 − CS−1C> = 0
(with S−1 = KK>) has a unique solution for S−1 iff µ1 and µ2 are linearly
independent.

Stated informally, this theorem says if you take two images with “ran-
dom” camera rotations, you can estimate K.

Algorithm

Given Ci, i = 1, . . . ,m for m ≥ 2, we can rewrite the m equations

S−1 − CiS
−1C>

i = 0

as
χs = 0

where χ ∈ R6m×6 is the design matrix and s ∈ R6 contains the stacked upper
triangular entries of the symmetric matrix S−1. Since S−1 is symmetric, we
can recover the remaining 3 entries using the 6 entries in s. As usual, recover
s using the SVD and reshape it to form S−1. Then you can get K from the
Cholesky decomposition of S−1.

10.4. Calibration using a rig

We now look at how to recover the camera calibration parameters from a
calibration object (or “rig”). We will look at two cases: a single view of a
cube and multiple views of a plane.

10.4.1. Example 1: Checkerboard Covered Cube (MaSKS 6.5.2)

Figure 2 shows a checkerboard-covered cube for which all the geometry is
known. Let X = (X, Y, Z, 1)> be the the coordinates of some known point
p on the rig. Its image x′ is given by

λx′ = ΠX = KΠogX

Let Π1,Π2,Π3 ∈ R4 denote the rows of Π:

Π =

 Π>
1

Π>
2

Π>
3

 ∈ R3×4
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6.5.2 Calibration with a rig

Calibration with a rig is the method of choice for camera calibration when one

has access to the camera and can place a known object in the scene.

Under these conditions, one can use an object with a distinct number of points,

whose coordinates relative to some reference frame are known with high accu-

racy, as a calibration rig. Notice that a calibration rig could be an actual object

manufactured primarily for the purpose of camera calibration (Figure 6.15), or

simply an object in the scene with known geometry, for instance a golf ball with

dots painted on it, or the rim of a car wheel whose alignment needs to be computed

from a collection of cameras.

Figure 6.15. An example of a calibration rig for laboratory use: a checkerboard-textured

cube.

Let X = [X, Y, Z, 1]T be the coordinates of a point p on the rig. Its image
has the pixel coordinates x′ = [x′, y′, 1]T that satisfy equation (6.1). If we let

π1, π2, π3 ∈ R4 be the three row vectors of the projection matrix Π = KΠ0g ∈
R3×4, then equation (6.1) can be written for each point pi on the rig as

λi

 x′i

y′i

1

 =

 πT
1

πT
2

πT
3




X i

Y i

Zi

1

 . (6.53)

From the third row we get λi = πT
3 X

i. Hence for each point we obtain the

following two equations

x′i(πT
3 X

i) = πT
1 X

i,

y′i(πT
3 X

i) = πT
2 X

i.

Unlike previous formulations, hereX i, Y i, and Zi are known, and so are x′i, y′i.

We can therefore stack all the unknown entries of Π into a vector and rewrite the

equations above as a system of linear equations

MΠs = 0,

Figure 2. Cube-shaped calibration rig (from MaSKS).

Then for each point pi on the rig, we can write

λi

 (xi)′

(yi)′

1

 =

 Π>
1

Π>
2

Π>
3




X i

Y i

Zi

1


The third coordinate implies that λi = Π>

3 X i. From this, we get the two
equations:

(xi)′(Π>
3 X i) = Π>

1 X i and (yi)′(Π>
3 X i) = Π>

2 X i

Note that X i, Y i, Zi, xi′, and yi′ are all known. We can put this into the
standard form

MΠs = 0

with Πs = Π(:) and M ∈ R2×12. (The exact entries of M are left as an
exercise.) Using the SVD, we can get a linear (suboptimal) estimate of
Π. As a sidenote, the process of recovering Π from an object with known
geometry is known as resection.

Note that Π = K[R,T ] = [KR, KT ]. The first 3×3 block of Π is KR, so
use the QR decomposition to separate K from R. Finally, T = K−1Π(:, 4).
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a more commonly adopted approach consists in capturing several images of a

known planar object, such as a checkerboard like the one shown in Figure 6.16.

Figure 6.16. Two images of the checkerboard for camera calibration. The resolution of the

images is 640 × 480.

Since we are free to choose the world reference frame, we choose it aligned

with the board so that points on it have coordinates of the special form X =
[X, Y, 0, 1]T . Notice that the center of the world frame needs to be on the board,
and the Z-axis of the world frame is the normal vector. Then, with respect to the
camera coordinate frame, the image x′ of a point X on the board is given by

equation (6.1), which for the given choice of coordinate frames simplifies to

λ

x′

y′

1

 = K[r1, r2, T ]

X
Y
1

 , (6.55)

where r1, r2 ∈ R3 are the first and second columns of the rotation matrix R.
Notice that the matrix

H
.
= K[r1, r2, T ] ∈ R3×3 (6.56)

is a linear transformation of the homogeneous coordinates [X, Y, 1]T to the ho-
mogeneous coordinates x′ = [x′, y′, 1]T ; i.e. it is a homography between the
checkerboard plane and the image plane.

Applying the common trick of multiplying both sides by the skew-symmetric

matrix x̂′ in order to eliminate λ (recall that x̂′x′ = 0) yields

x̂′H [X, Y, 1]T = 0. (6.57)

Notice that in the above equation, we know both x′ (measured from the image)

and [X, Y, 1]T (given from knowledge of the checkerboard). Hence H can be

solved (up to a scalar factor) linearly from such equations if sufficiently many

points on the checkerboard are given. We know from the previous chapter that at

least four images of such points are needed in order to solve for the homography

H up to a scalar factor.

Once we know H , we observe that its first two columns are simply [h1, h2] ∼
K[r1, r2]. This is equivalent to K−1[h1, h2] ∼ [r1, r2]. Since r1, r2 are or-

thonormal vectors, we obtain two equations that the calibration matrix K has

Figure 3. Two views of a planar calibration grid (from MaSKS).

Note that this method breaks down if the calibration pattern is planar.
Since planar calibration grids are much easier to construct, the next example
addresses that case.

10.4.2. Example 2: planar checkerboard2

Consider the planar checkerboard shown in Figure 3. For simplicity, choose
the world reference frame to lie on the board. Then all points have the form
X = (X, Y, 0, 1)> and the Z axis is the normal vector of the plane. This
gives rise to the following simplified relation between the world coordinates
and image coordinates:

λ

 x′

y′

1

 = K
[

r1 r2 T
]  X

Y
1


where ri = R(:, i). The matrix H = K(r1, r2, T ) ∈ R3×3 is the homography
from the checkerboard to the image plane:

λx′ = H

 X
Y
1


Using the standard trick of multiplying both sides by x̂′ to eliminate un-
known depth gives us

x̂′H

 X
Y
1

 = 0

2See the Matlab calibration toolbox from Jean-Yves Bouguet.
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From this we can solve for H using the 4 point algorithm. The first two
columns are [h1, h2] ∼ K[r1, r2] or K−1[h1, h2] ∼ [r1, r2]. Since r1 and r2

are orthogonal (b/c R ∈ SO(3)), their inner product with each other must
be zero,

h>
1 K−>K−1h2 = 0

and their inner product with themselves must be one,

h>
1 K−>K−1h1 = h2K

−>K−1h2 = 1

These equations are quadratic in the entries of K (b/c K is multiplied by
KT ). But, if we neglect the structure of S = (KK>)−1, we can solve for S
linearly and factor it to get K.

It is often safe to assume that the cameras have zero skew, i.e., sθ = 0.
When this is true, we have the additional constraint that so e>1 Se2 = 0,
where e1 = (1, 0, 0)> and e2 = (0, 1, 0)>. (Note that these ei’s are not
epipoles; this is MaSKS’s convention for unit vectors.)


