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LECTURE 11
Optimal Pose & Structure

11.1. Implications of noise in measurements

With all the methods and techniques that we have learned so far, we made
the assumption that the necessary point correspondences were both known
and free of noise. Unfortunately, actual measured point correspondences do
possess some amount of noise, and the noise propagates into the results of
our linear methods (calculating E, F , λ, etc.). For example, in the case of
the 8-point algorithm, we find that our solution Es to the null-space problem
(χEs = 0) is only an approximation of the exact solution. In geometrical
terms, given a pair of point correspondences from two different image planes,
we find that rays from the optical centers of each camera frame through the
imaged point on the respective image planes do not intersect exactly (see
Figure 1). Noise, however, does not render our linear methods useless; even
in the presence of noise, our linear methods provide pretty good results.
These linear methods can serve as an initialization step, from which we can
further refine the results by taking into account the noise present in our
measurements.
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Figure 5.6. Rays extended from a noisy image pair x̃1, x̃2 ∈ R
3 do not intersect at any

point p in 3-D if they do not satisfy the epipolar constraint precisely.

measure the actual coordinates but only their noisy versions, say

x̃
j
1 = x

j
1 + wj

1, x̃
j
2 = x

j
2 + wj

2, j = 1, 2, . . . , n, (5.22)

where x
j
1 and x

j
2 denote the “ideal” image coordinates and wj

1 = [wj
11, wj

12, 0]T

and wj
2 = [wj

21, wj
22, 0]T are localization errors in the correspondence. Notice

that it is the (unknown) ideal image coordinates (xj
1, x

j
2) that satisfy the epipolar

constraintx
jT
2 T̂Rx

j
1 = 0, and not the (measured) noisy ones (x̃j

1, x̃
j
2). One could

think of the ideal coordinates as a “model,” and wj
i as the discrepancy between

the model and the measurements: x̃
j
i = x

j
i + wj

i . Therefore, in general, we seek

the parameters (x, R, T ) that minimize the discrepancy between the model and
the data, i.e. wj

i . In order to do so, we first need to decide how to evaluate the

discrepancy, which determines the choice of optimization objective.

Unfortunately, there is no “correct,” uncontroversial, universally accepted ob-

jective function, and the choice of discrepancy measure is part of the design

process, since it depends on what assumptions are made on the residuals wj
i .

Different assumptions result in different choices of discrepancy measures, which

eventually result in different “optimal” solutions (x∗, R∗, T ∗).
For instance, one may assume that w = {wj

i } are samples from a distribution
that depends on the unknown parameters (x, R, T ), which are considered deter-
ministic but unknown. In this case, based on the model generating the data, one

can derive an expression of the likelihood function p(w|x, R, T ) and choose to
maximize it (or, more conveniently, its logarithm) with respect to the unknown

parameters. Then the “optimal solution,” in the sense of maximum likelihood, is

given by

(x∗, R∗, T ∗) = argmax φML(x, R, T )
.
=

∑
i,j

log p
(
(x̃j

i − x
j
i )|x, R, T

)
.

Naturally, different likelihood functions can result in very different optimal so-

lutions. Indeed, there is no guarantee that the maximum is unique, since p can

Figure 1. Nonintersection of rays through noisy images of a point.

11.2. Noise Model

We define our noise model by:

(11.1) x̃j
1 = xj

1 + wj
1 x̃j

2 = xj
2 + wj

2 j = 1, 2, . . . , n

where xj
1, x

j
2 are the ideal (platonic) points, x̃j

1, x̃
j
2 are the measured (noisy)

points, and wj
1 = (wj

11, w
j
12, 0)>, wj

2 = (wj
21, w

j
22, 0)> represents the error (or

jitter), distributed according to some pdf (probability distribution function).
Note that this noise model does not account for incorrect correspondences.

11.3. Calibrated 3D Reconstruction

In the case of calibrated 3D reconstruction, noise-free corresponding points
exactly satisfy the epipolar constraint:

(11.2) xj
2T̂Rxj

1 = 0

When noise is present, this does not hold. The optimization problem is that
we want to find R and T along with the “corrected” coordinates that satisfy
the epipolar constraint exactly. The problem may seem underconstrained,
but we know that there is some structure in the noise, e.g., a pdf with a peak
at the ideal image point, and this limits the magnitude of the displacements.

There is no universally accepted objective function we can use to solve
for (x, R, T ). Instead, different cost functions exist that minimize differ-
ent discrepancies. Two commonly used cost functions are ML (Maximum
Likelihood) and MAP (Maximum a Posteriori).
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11.3.1. ML (Maximum Likelihood)

The ML solution is given by

(11.3) (x∗, R∗, T ∗) = argmax φML(x, R, T ) =
∑
i,j

log p((x̃j
i − xj

i )|x, R, T )

The ML function defines the likelihood function as p(w|x, R, T ) and we seek
to maximize it with respect to the unknown parameters. We assume that the
likelihood belongs to a family of density functions (for example, Gaussian)
since estimating it from first principles is too difficult.

11.3.2. MAP (Maximum a Posteriori)

The main difference between MAP and ML is that MAP incorporates a
Bayesian “prior” probability in its calculations. The prior probability is
given by p(x, R, T ); we can exploit it to indicate that certain values of the
parameters are more likely than others. The MAP solution is given by

(11.4) (x∗, R∗, T ∗) = argmax φMAP (x, R, T ) = p(x, R, T |{x̃j
i})

The prior probability is exhibited by applying Bayes’ Theorem to φMAP :

p(x, R, T |{x̃j
i}) ∝ p({x̃j

i}|x, R, T )p(x, R, T )

11.4. Simple Cost Function: Reprojection Error

As a concrete example, we will consider the following simple cost function
to find (x∗, R∗, T ∗) = argmin φ(x, R, T ) with

(11.5) φ(x, R, T ) =
n∑

j=1

2∑
i=1

||x̃j
i − xj

i ||2

and the following constraints:

(11.6) xj>
2 T̂Rxj

1 = 0, xj>
1 e3 = 1, xj>

2 e3 = 1, j = 1, 2, . . . , n

where e3 = (0, 0, 1)>. This cost function is the “reprojection error” and
it is a special case of the ML cost function. We can convert the above to
an unconstrained minimization problem using Lagrange multipliers (MaSKS
Appendix 5.A). The idea here is that we will augment the cost function by
attaching some weight to every constraint. Using an initial approximation
of x we estimate R and T , and then use them to update the estimate for x
in an iterative fashion.

This iterative approach, however, is computationally expensive since it
requires us to estimate the 3D coordinates and then project them onto the
image planes to get an updated estimate. As an alternative, we would like to
have a method to estimate errors using only the measured image coordinates



4 SERGE BELONGIE, CSE 252B: COMPUTER VISION II

(eliminating the need for explicit 3D reconstruction); this means that we
want a cost function that depends ONLY on x̃. For this purpose MaSKS
proposes to use the distance from the epipolar line:

(11.7) φ(R,T ) =
n∑

j=1

(x̃j>
2 T̂Rx̃j>

1 )2

‖ê3T̂Rx̃j
1‖2

+
(x̃j>

2 T̂Rx̃j>
1 )2

‖x̃j>
2 T̂Rê3

>‖2

As promised, the equation depends only on x̃. The numerators in the cost
function give the distance to the epipolar line times a scale factor, and the
denominator provides the normalization factor to make the cost function
equal the distance on the image plane. This is illustrated in Figure 2.
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Figure 5.7. Two noisy image points x̃1, x̃2 ∈ R
3. Here !̃2 is an epipolar line that is the

intersection of the second image plane with the epipolar plane. The distance d2 is the geo-

metric distance between the second image point x̃2 and the epipolar line. Symmetrically,

one can define a similar geometric distance d1 in the first image plane.

(Exercise 5.12) that following the notation in the figure, we have

d2
2 =

(x̃T
2 T̂Rx̃1)2

‖ê3T̂Rx̃1‖2
.

In the presence of noise, minimizing the above objective function, although more

difficult, improves the results of the linear eight-point algorithm.

Example 5.13 (Comparison with the linear algorithm). Figure 5.8 demonstrates the ef-

fect of the optimization: numerical simulations were run for both the linear eight-point

algorithm and the nonlinear optimization. Values of the objective function φ(R, T ) at dif-
ferent T are plotted (with R fixed at the ground truth); “+” denotes the true translation T ,
“∗” is the estimated T from the linear eight-point algorithm, and “◦” is the estimated T by

upgrading the linear algorithm result with the optimization.

Structure triangulation

If we were given the optimal estimate of camera pose (R, T ), obtained, for
instance, from Algorithm 5.5 in Appendix 5.A, we can find a pair of images

(x∗
1, x

∗
2) that satisfy the epipolar constraint xT

2 T̂Rx1 = 0 and minimize the
(reprojection) error

φ(x) = ‖x̃1 − x1‖2 + ‖x̃2 − x2‖2. (5.28)

This is called the triangulation problem. The key to its solution is to find what

exactly the reprojection error depends on, which can be more easily explained ge-

ometrically by Figure 5.9. As we see from the figure, the value of the reprojection

error depends only on the position of the epipolar plane P : when the plane P ro-

tates around the baseline (o1, o2), the image pair (x1, x2), which minimizes the
distance ‖x̃1−x1‖2+‖x̃2−x2‖2, changes accordingly, and so does the error. To

Figure 2. Reprojection error (d2) shown in image plane 2.

Once we estimate the camera pose (R∗, T ∗) by minimizing Equation
(11.7), we can estimate (x∗1, x

∗
2) that satisfy the epipolar constraint (Equa-

tion 11.6) and minimize the reprojection error:

(11.8) φ(x) = ‖x̃1 − x1‖2 + ‖x̃2 − x2‖2

This is called optimal triangulation. If we fixed (R,T ) to minimize φ(x), we
find that the baseline (and epipoles) are also fixed on these constraints. This
leaves only the “tilt” of the epipolar plane to be defined, and we find that
φ(x) is dependent only on this tilt θ (See Figure 3). Given a value of θ then,
we can solve for distances between a point and its corresponding epipolar
line.

We can now define an algorithm to find (x, R, T ) that minimizes the
reprojection error.

(a) First obtain the measured coordinates of n corresponding points in
the two views.

(b) Find a linear estimate of (R, T ) (using 8 point algorithm for exam-
ple). Refine the estimate by minimizing Equation (11.7).
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Figure 5.8. Improvement by nonlinear optimization. A two-dimensional projection of the

five-dimensional residual function φ(R, T ) is shown in greyscale. The residual corre-
sponds to the two-dimensional function φ(R̂, T ) with rotation fixed at the true value. The
location of the solution found by the linear algorithm is shown as “∗,” and it can be seen
that it is quite far from the true minimum (darkest point in the center of the image, marked

by “+”).The solution obtained by nonlinear optimization is marked by “◦,” which shows a
significant improvement.
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Figure 5.9. For a fixed epipolar plane P , the pair of images (x1, x2) that minimize the
reprojection error d2

1 + d2
2 must be points on the two epipolar lines and closest to x̃1, x̃2,

respectively. Hence the reprojection error is a function only of the position of the epipolar

plane P .

parameterize the position of the epipolar plane, let (e2, N1, N2) be an orthonor-
mal basis in the second camera frame. Then P is determined by its normal vector

!2 (with respect to the second camera frame), which in turn is determined by the

angle θ between !2 andN1 (Figure 5.9). Hence the reprojection error φ should be
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(Exercise 5.12) that following the notation in the figure, we have

d2
2 =

(x̃T
2 T̂Rx̃1)2

‖ê3T̂Rx̃1‖2
.

In the presence of noise, minimizing the above objective function, although more

difficult, improves the results of the linear eight-point algorithm.

Example 5.13 (Comparison with the linear algorithm). Figure 5.8 demonstrates the ef-

fect of the optimization: numerical simulations were run for both the linear eight-point

algorithm and the nonlinear optimization. Values of the objective function φ(R, T ) at dif-
ferent T are plotted (with R fixed at the ground truth); “+” denotes the true translation T ,
“∗” is the estimated T from the linear eight-point algorithm, and “◦” is the estimated T by

upgrading the linear algorithm result with the optimization.

Structure triangulation

If we were given the optimal estimate of camera pose (R, T ), obtained, for
instance, from Algorithm 5.5 in Appendix 5.A, we can find a pair of images

(x∗
1, x

∗
2) that satisfy the epipolar constraint xT

2 T̂Rx1 = 0 and minimize the
(reprojection) error

φ(x) = ‖x̃1 − x1‖2 + ‖x̃2 − x2‖2. (5.28)

This is called the triangulation problem. The key to its solution is to find what

exactly the reprojection error depends on, which can be more easily explained ge-

ometrically by Figure 5.9. As we see from the figure, the value of the reprojection

error depends only on the position of the epipolar plane P : when the plane P ro-

tates around the baseline (o1, o2), the image pair (x1, x2), which minimizes the
distance ‖x̃1−x1‖2+‖x̃2−x2‖2, changes accordingly, and so does the error. To

Figure 3. Estimating x∗
1,x

∗
2 while varying θ

(c) Find the tilt (θ) of the plane to minimize d1 and d2 via Equation
(11.8).

(d) Rinse and repeat.

11.5. Optimal Pose and Structure – Uncalibrated Case

We have seen earlier that the DLT algorithm minimizes a residual error of
the form ‖χF s‖. While very simple from an implementation point of view,
this algebraic quantity is not geometrically meaningful. So, the minimum
norm solution may differ from what we expect intuitively, i.e., a solution
that minimizes error on the image plane.

We will now have a look at a cost function commonly used in uncalibrated
SFM that is easy to compute but corresponds to the geometric error when
the error is small. This cost function is called the Sampson error, after
P. D. Sampson who introduced this approximation for conic fitting to sparse
data.

11.5.1. Derivation of the Sampson Distance

Recall that the noise model we are using is additive. The measured points
x̃j

i are related to the platonic points xj
i by an error term wj

i drawn from a
specified pdf:

x̃j
i = xj

i + wj
i for i = 1, 2 j = 1, . . . , n

Collect together, for each putative correspondence x̃1 ↔ x̃2, the following
quantities:

• a measured vector, X̃ = (x̃>1 , x̃>2 )
> ∈ R4

• a corrected vector, X = (x>1 , x>2 )
> ∈ R4
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• a noise vector, w = (w11, w12, w21, w22)
> ∈ R4.

Given X̃j ∈ R4, the objective is to find an element on the so-called “variety”

VF defined by xj>
2 Fxj

1 = 0 that most nearly passes through X̃j. To this
end, we write the epipolar constraint as a cost function:

CF (X̃
j
) = x̃j>

1 F x̃j
2

Expanding the cost function into its first-order Taylor series, we get

(11.9) CF (X̃
j
+ δ) = CF (X̃

j
) +

∂CF

∂X̃
j δ

Here we have δ = Xj − X̃
j

and Xj is desired to lie on the variety VF so
that the epipolar constraint is satisfied; that is, we wish to enforce CF (Xj) =

CF (X̃
j
+δ) = 0. Denoting the Jacobian above by J and the associated cost

by ε, Equation (11.9) can be re-written as

(11.10) Jδ = −ε

Note that in this case, J is a 1 × 4 row vector.1 Thus, we are left with a
minimization problem:

• Find the vector δ that minimizes ‖δ‖ subject to Jδ = −ε.

The solution using Lagrange Multipliers is straightforward (Addendum A)
and has the form

(11.11) δ = −J>(JJ>)−1ε

This is the Sampson error, and its norm is given by

(11.12) ‖δ‖2 = δ>δ = ε>(JJ>)−1ε

Writing CF (X̃
j
) explicitly as x̃j>

2 F x̃j
1 and the Jacobian as

J =

(
∂CF

∂x̃j
1

,
∂CF

∂x̃j
2

)
We perform the requisite differentiations (see Addendum B) to obtain the
row vector

(11.13) J = (F>x̃j
2, F x̃j

1)

Thus JJ> is a scalar given by

(11.14) JJ> = (F x̃j
1)

2

1 + (F x̃j
1)

2

2 + (F>x̃j
2)

2

1 + (F>x̃j
2)

2

2

Here, (·)k represents the k-th component of a vector. The scalar ε is given

by x̃j>
2 F x̃j

1.

1My apologies for breaking with protocol here; I had promised that all vectors would be
column vectors, and J is a row vector here.
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Substituting the expressions for ε and J in Equation (11.11) and sum-
ming over all n correspondences, we get the cost function2

(11.15) φ(F ) =
n∑

j=1

(x̃j>
2 F x̃j

1)
2

(F x̃j
1)

2

1 + (F x̃j
1)

2

2 + (F>x̃j
2)

2

1 + (F>x̃j
2)

2

2

This gives a first-order approximation of the geometric error provided the
conditions for Taylor Series expansion are satisfied, that is, if the truncation
error given by the higher (second onwards) order terms is small.

11.5.2. Utility of Sampson Cost Function for Minimization

The cost function in Equation (11.15) can be used in a Maximum Likelihood
estimation of the fundamental matrix, given n ≥ 8 image correspondences.
Note that this cost function involves only the parameters of F , so the mini-
mization of the reprojection error is reduced to a 7-dof problem from a 7+3n

dof problem (7 for the F -matrix and 3 for each 3D point X̃
j
, j = 1, . . . , n).

Common optimization routines used in practice for this problem are
Gauss-Newton and Levenberg-Marquardt. The last, in particular, is the
same as Gauss-Newton applied to a least-squares problem and has been ex-
tensively used in computer vision literature, especially in image mosaicing
and multiple-view reconstruction.

Addendum A - Lagrange multipliers

Our goal is to find the vector δ that minimizes ‖δ‖ subject to J>δ = −ε.
Introducing a vector λ of Lagrange multipliers, the objective function to be
minimized becomes δ>δ− 2λ>(Jδ + ε), the factor of 2 has been introduced
for algebraic simplification. Differentiate with respect to δ to obtain

(11.16) δ = J>λ

Substituting in the original constraint equation Jδ = −ε,

JJ>λ = −ε

Solving for λ and substituting in (11.16), we get

(11.17) δ = −J>(JJ>)
−1

ε

2Note: this expression, which is from H&Z, looks different than its counterpart in MaSKS;
Ben Ochoa has verified (in a handwritten note) that they are in fact equivalent.
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Addendum B - Vector and matrix differentiation

For vectors a, b and matrix M , we have

∂

∂a
a>Mb = Mb and

∂

∂b
a>Mb = M>a


