CSE 252B: Computer Vision II

Lecturer: Serge Belongie
Scribes: Louka Dlagnekov, Brian Fulkerson

LECTURE 13
Interest Point Detection

13.1. Introduction

The algorithms we have studied thus far have required us to provide two sets
of interest points and, by virtue of the indexing of the two sets of coordinates,
correspondences. So far we have done this by manually clicking on points in
the images, but, in general, we will need to automate this process, and that
will be the subject of this and the following lecture.

Figure 1 shows the left and right view from a wide baseline stereo pair and
contains two examples of correspondences. The circle (intersection on the
checkerboard) indicates a somewhat straightforward correspondence, and the
square (corner of the mouth) is slightly more difficult. The correspondence
problem increases in difficulty with wider baselines. For the human visual
system, finding these correspondences is a trivial task.

In this lecture we will discuss how to find these interest points in an
image.

IDepartment of Computer Science and Engineering, University of California, San Diego.

May 17, 2004

2 SERGE BELONGIE, CSE 252B: COMPUTER VISION II

Figure 1. An example of two correspondences. (From MaSKS)

13.2. Interest Point Detection
We would like interest points to be:

e Sparse
e Informative
e Reproducible

13.2.1. Terminology

In the computer vision community, interest point detection is often called
corner detection, even though not all features need be corners. What we usu-
ally mean by corners are actually L junctions, but there are also Y junctions,
X junctions, ¥ junctions, etc. each having different levels if informativeness.

13.3. An Example of Corner Detection

It is desirable for a corner detector to fire when there exists a real corner.
The area circled in green in Figure 2 is an example of a real corner in the
physical world, and the area circled in red is an example of a window in
the image that is not a real corner. Something like the latter is not a good
interest point because leads to a false correspondence. This type of junction
is called an occlusion junction, since it is formed by one surface occluding
another surface at a different depth.

LECTURE 13. INTEREST POINT DETECTION 3

Figure 2. Example of good corner (green) and a not so good corner (red)

13.4. Properties of Corners

If we think of each point on the image plane as having a certain brightness,
then we can imagine the image to be a 3D surface with light points being
high and dark points being low. This enables us to use basic calculus on the
surface and the simplest thing we can do is compute its gradient.

Definition 13.1. The gradient of an image I at a point (z,y) is denoted
V1 and points in the direction of greatest change from dark to light.

-4

Corner features occur where there is a sharp change in the angle of the
gradient. Figure 3 shows what a corner might look like in a window of 10 by
16 pixels. The arrows point in the direction of the gradient.

13.5. Finding Corners

We would like to know whether each part of the image is a corner and if so
whether that corner is a good corner. To do so we can analyze the pixels of
the image in a small neighborhood, A/, and assign the location of a corner to
the point with minimum weighted distance to all the tangent lines through
each pixel in A (see Figure 3b). A typical size for N is 5 x 5 pixels, though
in practice it should be set as a percentage of the image dimensions, and its
width should be odd, for reasons of symmetry.

13.5.1. Formulating the Cost Function

Consider a neighborhood of an image containing an ideal corner. For the
image in Figure 4(a), the tangent lines intersect exactly at the location of
the corner.

4 SERGE BELONGIE, CSE 252B: COMPUTER VISION II

(a) (b)

corner pixel

edge pixel

Figure 3. (a) A closeup (of neighborhood N) of a corner in an image
(b) Another closeup with tangent lines to the curve (perpendicular to the
gradient) shown.

() (b)

v //

Figure 4. (a) Ideal case: tangent lines intersect exactly at corner. (b)
In real images, we can only hope to find an approximation to this point
of intersection, indicated here by the dot. The arrow indicates a gradient
vector at a sample pixel.

In real images, the corners aren’t this clean and we need an approximate
solution. We will seek a least-squares solution for the point of intersection
of the tangent lines, as suggested in Figure 4(b).

The equation for the tangent line I, passing through a pixel at location
x' is

Dy(x) =VI(x) (x —2') =0

where VI(2') denotes the gradient of the image I at &', indicated by the
small arrow in Figure 4(b). Our goal is to find the point x, with the minimum

LECTURE 13. INTEREST POINT DETECTION 5

perpendicular distance to all the lines in this neighborhood:
x, = arg min Dy (x)*dx’
xER? J e N

where N denotes the neighborhood around a candidate corner location. This
expression is the weighted integral of the squares of the distances from @ to
all lines in /. Dy (x) describes the distance from « to the line I,y multiplied
by the gradient magnitude. In this way we give more weight to lines that pass
through strong edge pixels. (Recall that pixels in roughly constant regions
have small gradient magnitudes with arbitrary gradient directions.)

13.5.2. The least-squares solution

We can find x, in closed form as follows:

x, = argmin/(VI(:I:’)T(a:—:I:’))2d:c'

xeR?
= argmin /(:c —x)'VI(Z)VI(Z) (x — x')dx’

(13.2) = arg mwin x'Ax —2x'b +c
where

A = / VI(z)\VI(x') dx'

b = / VI(x\VI(z) z'dx’

c = /w’TVI(w’)VI(:c’)Ta:/dw’

Note: Ais2x 2,bis 2 x 1, and c is a scalar.

The arg min in Equation (13.2) can be found by taking its derivative
w.r.t. and setting it equal to zero. This gives

at the minimum. Therefore the subpixel coordinates of the corner are given
by &, = A~'b.

The above method is known as Forstner corner detection (1987). A
variant of it is called the Harris corner detector (1988).

The solution &, = A~'b will be possible only when the rank of A is 2.

6 SERGE BELONGIE, CSE 252B: COMPUTER VISION II

(c)

Figure 5. Some example image neighborhoods: (a) constant, (b) edge,
(c) corner

Since real images are discrete, A’s contents are obtained using sums in
place of integrals,

SOy
13.3 A= : v
(13.3) S, NI

where each sum is over the neighborhood A. (And similarly for b and c.)
Matlab’s discrete approximation to the gradient is implemented in gradient .m.

13.5.3. Discussion

e Different neighborhoods around a true corner location will each yield
different estimates of «,. Keep the one from the neighborhood whose
center is closest to x,.

e The symmetric positive semidefinite matrix A is known as the “win-
dowed image second moment matrix” or just “second moment ma-
trix.” The same matrix appears in Lucas and Kanade’s method of
recovering optical flow.

e Note the similarity between A and the covariance matrix for a col-
lection of n gradient vectors.

e By substituting normal lines for tangents, the above least-squares
formulation can be modified in a straightforward way to find the
center of circular features instead of corners.

e A spatial weighting function w(x’) (e.g. a Gaussian) is sometimes
used in the above integrals to give more weight to pixels near the
center of the neighborhood.

13.5.4. Possible Forms of the A Matrix

Three example image neighborhoods are shown in Figure 5. These scenarios
will result in the following forms of the A matrix:

LECTURE 13. INTEREST POINT DETECTION 7

PN

One can notice that if half of the gradient vectors point up and the other
half point to the side, then A will take the form of (¢) and have rank 2 — a
“healthy feature” (a Serge term). Also note that a small disk or square in
the neighborhood as the sole feature could also give a second moment matrix
in the form of (c).

In practice we look at the two eigenvalues of A (call them Ay Ay, with
A1 < A2) to get a soft measure of the rank for a neighborhood. E.g., you
could threshold \;/trace(A) = A\1/(A1 + A2). Sometimes people just use A;.
Harris suggests thresholding det(A) + k - trace?(A) with k = 0.04 to obtain
features that are somewhere in between corners and edges.

13.6. Conclusion

We have described a framework for extracting points to feed to the algo-
rithms we studied earlier in the class. We have not yet described how to find
correspondences, i.e., how to match interests points between two images.
That will be the subject of next lecture.

