CSE 140 Discussion \#1 Boolean Algebra

04/06/2009

Truth Table and Canonical Form

Sum-of-products (SOP) form

A	B	C	Y
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

$$
\begin{aligned}
Y & =A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C \\
& =\sum m(0,2,4,5,7)
\end{aligned}
$$

Product-of-sums (POS) form

$$
\begin{aligned}
\mathrm{Y} & =\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}\right) \\
& =\Pi \mathrm{M}(1,3,6)
\end{aligned}
$$

Relationship between SOP \& POS

$$
\begin{aligned}
\sum \mathrm{m}(0,2,4,5,7) & =\Pi \mathrm{M}(1,3,6)=\left(\sum \mathrm{m}(1,3,6)\right)^{\prime} \\
& =(\Pi \mathrm{M}(0,2,4,5,7))^{\prime}
\end{aligned}
$$

Boolean Function Simplification(1)

```
\(Y=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}+A B^{\prime} C+A B C\)
    \(=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}\right)+\left(A^{\prime} B^{\prime} C^{\prime}+A B^{\prime} C^{\prime}\right)+\left(A B^{\prime} C+A B C\right) \quad\) (associativity and idempotency)
    \(=A^{\prime} C^{\prime}\left(B^{\prime}+B\right)+B^{\prime} C^{\prime}\left(A^{\prime}+A\right)+A C\left(B^{\prime}+B\right)\)
    \(=A^{\prime} C^{\prime} 1+B^{\prime} C^{\prime} 1+A C 1\)
    \(=A^{\prime} C^{\prime}+B^{\prime} C^{\prime}+A C\)
\(\mathrm{Y}=\left(\mathrm{A}+\mathrm{B}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}\right)\left(\mathrm{A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}\right)\)
    \(=\left(\left(A+C^{\prime}\right)+B^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\)
    \(=\left(\left(A+C^{\prime}\right)+0\right)\left(A^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}\right)\)
    \(=\left(A+C^{\prime}\right)\left(A^{\prime}+B^{\prime}+C\right)\)
```

(distributivity)
(Complement)
(Identity)

Boolean Function Simplification(2)

$$
\begin{aligned}
Y & =B C+A^{\prime} B^{\prime} C^{\prime}+B C^{\prime} \\
& =B C+B^{\prime}+A^{\prime} B^{\prime} C^{\prime} \\
& =B+A^{\prime} B^{\prime} C^{\prime} \\
& =B+A^{\prime} C^{\prime}+A^{\prime} B^{\prime} C^{\prime} \\
& =B+\left(A^{\prime} B C^{\prime}+A^{\prime} B^{\prime} C^{\prime}\right) \\
& =B+A^{\prime} C^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
Y & =\left(A+A^{\prime} B+A^{\prime} B^{\prime}\right)^{\prime}+\left(A+B^{\prime}\right)^{\prime} \\
& =\left(A+A^{\prime}\right)^{\prime}+\left(A+B^{\prime}\right)^{\prime} \\
& =1^{\prime}+\left(A+B^{\prime}\right)^{\prime} \\
& =\left(A+B^{\prime}\right)^{\prime} \\
& =A^{\prime} B
\end{aligned}
$$

(commutativity + associativity)
(combining or distributivity+complement)
(covering)
(associativity)
(combining or distributivity+complement)
(associativity+combining)
(complement)
(identity)
(De Morgan's Law)

Boolean Function Simplification(3)

$$
\begin{aligned}
Y & =A B D+A C D+B^{\prime} C^{\prime} D \\
& =A B D+\left(A C D+B^{\prime} C^{\prime} D\right) \\
& =A B D+\left(A C D+B^{\prime} C^{\prime} D+A B^{\prime} D\right) \\
& =A B D+A B^{\prime} D+A C D+B^{\prime} C^{\prime} D \\
& =A D+A C D+B^{\prime} C^{\prime} D \\
& =A D+B^{\prime} C^{\prime} D
\end{aligned}
$$

(associativity)
(consensus)
(commutativity + associativity)
(combining or distributivity+complement) (covering)

Or another way

$$
\begin{aligned}
Y & =A B D+A C D+B^{\prime} C^{\prime} D \\
& =A D(B+C)+B^{\prime} C^{\prime} D \\
& =A D\left(B^{\prime} C^{\prime}\right)^{\prime}+B^{\prime} C^{\prime} D \\
& =D\left(A\left(B^{\prime} C^{\prime}\right)^{\prime}+B^{\prime} C^{\prime}\right) \\
& =D\left(A\left(B^{\prime} C^{\prime}\right)^{\prime}+A B^{\prime} C^{\prime}+B^{\prime} C^{\prime}\right) \\
& =D\left(A+B^{\prime} C^{\prime}\right) \\
& =A D+B^{\prime} C^{\prime} D
\end{aligned}
$$

(De Morgan's Law)
(distributivity)
(covering + associativity)
(combining or distributivity+complement)
(distributivity)

Combinational Circuit with Cyclic Path

The cyclic path must be a false path, otherwise the behavior of the circuit might be unstable

$$
\begin{aligned}
& A=0 \rightarrow Y=0 \\
& A=1 \rightarrow Y=1
\end{aligned} \text { Stable behavior }
$$

The cyclic path is always blocked by the controlling value of the gates

$$
Y=A(A+Y)=A
$$

