CSE 140 Discussion

Chengmo Yang Mingjing Chen 06/01/09

Overflow

Prove that for two's complement number system arithmetic, the overfow of the addition is determined by the last two carry bits, i.e. overflow flag $=c_{n} \bigoplus c_{n-1}$.

Overflow cases:

- Adding two positive numbers \rightarrow overflow iff $s_{n-1}=1$

$$
\begin{aligned}
a_{n-1}=b_{n-1}=0 & \rightarrow c_{n} \text { always }=0, s_{n-1}=1 \text { iff } c_{n-1}=1 \\
& \rightarrow \text { overflow iff } c_{n} \bigoplus c_{n-1}=1
\end{aligned}
$$

- Adding two negative numbers \rightarrow overflow iff $\mathrm{s}_{\mathrm{n}-1}=0$

$$
\begin{aligned}
a_{n-1}=b_{n-1}=1 & \rightarrow c_{n} \text { always }=1, s_{n-1}=0 \text { iff } c_{n-1}=0 \\
& \rightarrow \text { overflow iff } c_{n} \oplus c_{n-1}=1
\end{aligned}
$$

$$
-4+-5=-9
$$

$$
1011
$$

- Adding two numbers with different signs \rightarrow never overflow Why?

$$
1100
$$

$$
a_{n-1} \neq b_{n-1} \rightarrow c_{n} \text { always }=c_{n-1} \rightarrow c_{n} \bigoplus c_{n-1}=0
$$

$$
\begin{array}{r}
+1011 \\
\hline 0111
\end{array}
$$

$$
\begin{aligned}
& 3+5=8 \\
& 0111 \\
& 0011 \\
& \begin{array}{r}
0101 \\
+01000
\end{array}
\end{aligned}
$$

Carry Look Ahead (CLA) Adder

A carry look ahead adder inputs two-bit numbers (a1; a0) and (b1; b0), and a carry in c0. Use a minimal two-level NAND gate network to implement the carry out c2.

$$
\begin{aligned}
& c 1=a 0 b 0+(a 0+b 0) c 0 \\
& c 2=a 1 b 1+(a 1+b 1) c 1 \\
&=a 1 b 1+(a 1+b 1) a 0 b 0+(a 1+b 1)(a 0+b 0) c 0 \\
&=a 1 b 1+a 1 a 0 b 0+b 1 a 0 b 0+a 1 a 0 c 0+b 1 a 0 c 0+a 1 b 0 c 0+b 1 b 0 c 0 \\
& 1^{\text {st }} \text { level: one } 2 \text {-input NAND and six 3-input NAND } \\
& 2^{\text {nd }} \text { level: one 7-input NAND }
\end{aligned}
$$

Simplification: use 3-level logic
$1^{\text {st }}$ level: $p 1=a 1+b 1, g 1=a 1 b 1, p 0=a 0+b 0, g 0=a 0 b 0$,
$2^{\text {st }}$ and $3^{\text {rd }}$ levels: $c 2=g 1+\mathrm{p} 1 \mathrm{~g} 0+\mathrm{p} 1 \mathrm{p} 0 \mathrm{c} 0$
Total gates: three 2-input AND, one 3-input AND two 2-input OR, one 3-input OR

Carry Look Ahead (CLA) Adder

$$
\begin{aligned}
& \mathrm{c}_{1}=\mathrm{g}_{0}+\mathrm{p}_{0} \mathrm{c}_{0} \\
& \mathrm{c}_{2}=\mathrm{g}_{1}+\mathrm{p}_{1} \mathrm{c}_{1}=\mathrm{g}_{1}+\mathrm{p}_{1} g_{0}+\mathrm{p}_{1} p_{0} c_{0} \\
& \mathrm{c}_{3}=g_{2}+\mathrm{p}_{2} c_{2}=g_{2}+\mathrm{p}_{2} g_{1}+\mathrm{p}_{2} p_{1} g_{0}+\mathrm{p}_{2} p_{1} p_{0} c_{0} \\
& \mathrm{c}_{4}=g_{3}+\mathrm{p}_{3} c_{3}=g_{3}+\mathrm{p}_{3} g_{2}+\mathrm{p}_{3} p_{2} g_{1+}+p_{3} p_{2} p_{1} g_{0}+\frac{p_{3} p_{2} p_{1} p_{0} c_{0}}{\mathrm{P}_{30}} \\
& \mathrm{~g}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}} \mathrm{~b}_{\mathrm{i}} \quad \mathrm{p}_{\mathrm{i}}=\mathrm{a}_{\mathrm{i}}+\mathrm{b}_{\mathrm{i}} \quad \mathrm{G}_{30}
\end{aligned}
$$

Carry Look Ahead (CLA) Adder

$$
\begin{aligned}
& \mathrm{c}_{1}=\mathrm{g}_{0}+\mathrm{p}_{0} \mathrm{c}_{0} \\
& \mathrm{c}_{2}=\mathrm{g}_{1}+\mathrm{p}_{1} \mathrm{c}_{1}=\mathrm{g}_{1}+\mathrm{p}_{1} \mathrm{~g}_{0}+\mathrm{p}_{1} \mathrm{p}_{0} \mathrm{c}_{0} \\
& \mathrm{c}_{3}=\mathrm{g}_{2}+\mathrm{p}_{2} \mathrm{c}_{2}=\mathrm{g}_{2}+\mathrm{p}_{2} \mathrm{~g}_{1}+\mathrm{p}_{2} \mathrm{p}_{1} \mathrm{~g}_{0}+\mathrm{p}_{2} \mathrm{p}_{1} \mathrm{p}_{0} \mathrm{c}_{0} \\
& c_{4}=g_{3}+p_{3} c_{3}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} c_{0} \\
& g_{i}=a_{i} b_{i} \quad p_{i}=a_{i}+b_{i}
\end{aligned}
$$

CLA Adder Delay

- Step 1: compute g_{i} and p_{i} signals for each single bit in parallel
- Step 2: compute G and P for 4 -bit blocks
- Step 3: C_{0} propagates through each 4-bit CLA block
- Step 4: compute sum, $s_{i}=p_{i} \oplus c_{i}$
- Longest path: a_{0} to s_{15}

CLA Adder Delay

- Delay of an N-bit carry-lookahead adder with k-bit blocks:

$$
t_{C L A}=t_{p g}+t_{p g_{-} \text {block }}+(N / k-1) t_{\mathrm{AND}_{-} \mathrm{OR}}+k t_{F A}
$$

where
$-t_{p g}$: delay of the column generate and propagate gates

- $t_{p g _ \text {block }}$: delay of the block generate and propagate gates
- $t_{\mathrm{AND} \text { _OR }}$: delay from C_{in} to $C_{\text {out }}$ of the final AND/OR gate in the k-bit CLA block
- An N-bit carry-lookahead adder is generally much faster than a ripple-carry adder for $N>16$

Subtracter

A subtracter inputs a two-bit number ($\mathrm{x} 1 ; \mathrm{x} 0$), a subtrahend ($\mathrm{y} 1 ; \mathrm{y} 0$) and a borrow-in bit b0, and outputs the dierence ($\mathrm{d} 1 ; \mathrm{d} 0$) and a borrowout bit b2. Write the boolean expression of borrow-out bit b2 as a function of variables $x 1 ; x 0 ; y 1 ; y 0 ; b 0$.

Full subtracter truth table		
$\boldsymbol{x}_{\boldsymbol{i}} \boldsymbol{y}_{\boldsymbol{i}}$	b_{i}	$d_{i} b$
00	0	00
00	1	1
01	0	11
01	1	-
10	0	1
10		0 0
1	0	0
11	1	

$$
\begin{aligned}
& d_{i}=x_{i} \bigoplus y_{i} \bigoplus_{i} b_{i} \\
& b_{i+1}=x_{i}^{\prime} y_{i}+x_{i}^{\prime} b_{i}+y_{i} b_{i}
\end{aligned}
$$

Therefore we have:

$$
\begin{aligned}
\mathrm{b} 1 & =\mathrm{x} 0^{\prime} \mathrm{y} 0+\left(\mathrm{x} 0{ }^{\prime}+\mathrm{y} 0\right) \mathrm{b} 0 \\
\mathrm{~b} 2 & =\mathrm{x} 1^{\prime} \mathrm{y} 1+\left(\mathrm{x} 1^{\prime}+\mathrm{y} 1\right) \mathrm{b} 1 \\
& =\mathrm{x} 1^{\prime} \mathrm{y} 1+\left(\mathrm{x} 1^{\prime}+\mathrm{y} 1\right) \mathrm{x} 0{ }^{\prime} \mathrm{y} 0+\left(\mathrm{x} 1^{\prime}+\mathrm{y} 1\right)\left(\mathrm{x} 0^{\prime}+\mathrm{y} 0\right) \mathrm{b} 0
\end{aligned}
$$

Subtracter

Use two full adders and a minimal number of AND, OR, NOT gates to implement a look-ahead subtracter. Draw the schematic diagram.
The whole circuit is composed of 3 parts:
Step1: generate $\mathrm{g} 1, \mathrm{~g} 0$ and $\mathrm{p} 1, \mathrm{p} 0$ in parallel.

$$
g i=x i^{\prime} y i \quad p i=x i+y i
$$

Step2: generate b1 and b2 in parallel.

$$
\begin{aligned}
& \mathrm{b} 1=\mathrm{g} 0+\mathrm{p} 0 \mathrm{~b} 0 \\
& \mathrm{~b} 2=\mathrm{g} 1+\mathrm{p} 1 \mathrm{~g} 0+\mathrm{p} 1 \mathrm{p} 0 \mathrm{~b} 0
\end{aligned}
$$

Step3: generate d0 and d1 using full adders.

$$
\begin{aligned}
& \mathrm{d} 0=\mathrm{x} 0 \bigoplus \mathrm{y} 0 \bigoplus \mathrm{~b} 0 \\
& \mathrm{~d} 1=\mathrm{x} 1 \bigoplus \mathrm{y} 1 \bigoplus \mathrm{~b} 1
\end{aligned}
$$

Sequential Adder

A sequential adder inputs $\mathrm{a}_{\mathrm{i}} ; \mathrm{b}_{\mathrm{i}}$, the $\mathrm{i}^{\text {th }}$ bit of two binary numbers in each clock cycle for $\mathrm{i}=0$ to $\mathrm{n}-1$ and outputs the sum s_{i}. Implement the adder with a JK flip-flop, and a minimal AND-OR-NOT network (if the network is needed). Draw the schematic diagram.

$$
\begin{aligned}
& c_{i+1}=a_{i} b_{i}+a_{i} c_{i}+b_{i} c_{i} \\
& s_{i}=a_{i}^{\prime} b_{i}^{\prime} c_{i}+a_{i}^{\prime} b_{i} c_{i}^{\prime}+a_{i} b_{i}^{\prime} c_{i}^{\prime}+a_{i} b_{i} c_{i}
\end{aligned}
$$

Where is c_{i} ?
Stored in the JK flip flop

Full adder truth table:

$\boldsymbol{a}_{\boldsymbol{i}} \boldsymbol{b}_{\boldsymbol{i}}$	$\boldsymbol{c}_{\boldsymbol{i}}$	$\boldsymbol{c}_{\boldsymbol{i}+\boldsymbol{1}} \boldsymbol{s}_{\boldsymbol{i}}$		
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

FSM state table:

6.5. Counter

Counters: Given modulo-16 counters, draw the logic diagram to show the following designs
-6.5.1 Design a module-200 counter with a repeated output
Count through 0 to 199 $(199)_{10}=(11000111)_{2}$

Reset the counter after it counts to 199

6.5. Counter

- 6.5.2 Design a counter with a repeated output sequence $\mathbf{1 5}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{8}$, $9,10,6,7$, with a modulo-16 counter and a minimal combinational network

9 -cycle sequence \rightarrow count from 0 to 8 and then reset
Need to map the counter output to the number sequence

Mapping logic

Q	0
0	0
1	1
2	2
3	8
4	9
5	10
6	6
7	7
8	15

6.5.2 Counter (Continued)

Mapping logic

Q	0
0	0
1	1
2	2
3	8
4	9
5	10
6	6
7	7
8	15

Kmap for O3
Q3Q2

Q3	Q2	Q1	Q0	03	02	01	O0
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	0
0	0	1	1	1	0	0	0
0	1	0	0	1	0	0	1
0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	1
1	0	0	0	1	1	1	1

Kmap for O1
Q3Q2

Truth table

Q100	00	01	11	10
00	0	1	X	1
01	0	1	X	X
11	1	0	X	X
10	0	0	X	X

Q1Q0	00	01	11	10
00	0	0	X	1
01	0	0	X	X
11	0	1	X	X
10	0	1	X	X

$\mathrm{O}_{3}=\mathrm{Q}_{2} \mathrm{Q}_{1}{ }^{\prime}+\mathrm{Q}_{3}+\mathrm{Q}_{2}{ }^{\prime} \mathrm{Q}_{1} \mathrm{Q}_{0}$
$\mathrm{O}_{2}=\mathrm{Q}_{2} \mathrm{Q}_{1}+\mathrm{Q}_{3}$
$\mathrm{O}_{1}=\mathrm{Q}_{2} \mathrm{Q}_{0}+\mathrm{Q}_{3}+\mathrm{Q}_{1} \mathrm{Q}_{0}{ }^{\prime}$

$\begin{array}{r} \text { Q1Q0 } \\ 00 \end{array}$	00	01	11	10
	0	0	X	1
01	0	1	X	X
11	0	1	X	X
10	1	1	X	X
$\mathrm{O}_{1}=\mathrm{Q}_{2} \mathrm{Q}_{0}+\mathrm{Q}_{3}+\mathrm{Q}_{1} \mathrm{Q}^{0}$				

6.6 Counter

- Design a counter with a repeated output sequence $0,1,2$, $4,5,6,3$, with a modulo- 8 counter and a minimal AND-ORNOT network

7 -cycle sequence \rightarrow count from 0 to 6 and then reset
Need to map the counter output to the number sequence

Mapping logic

\mathbf{Q}	0
0	0
1	1
2	2
3	4
4	5
5	6
6	3

6.7 System Design

- Alg(X, Y, Z, start, U, done);
- Input X[7 : 0], Y [7:0], Z[7 : 0], start;
- Output U[7 : 0], done;
- Local-object A[7:0], B[7:0], C[7:0];
- S1: If start' goto S1;
- S2: done $<=0| | \mathrm{A}<=\mathrm{X}| | \mathrm{B}<=\mathrm{Y}| | \mathrm{C}<=\mathrm{Z}$;
- S3: $\mathrm{A}<=\operatorname{Add}(\mathrm{A} ; \mathrm{B})$;
- S4: If $\mathrm{B}^{\prime}[7]$ goto $\mathrm{S} 3|\mid \mathrm{B}<=\operatorname{Inc}(\mathrm{B})$;
- S5: If C'[7] goto S3 || C <= Inc(C);
- S 6 : U <= $\mathrm{A}|\mid$ done $<=1$ || goto S 1 ;
- End Alg

6.7 System Architecture

The controller

- Reads B[7] and C[7] to determine the destination of "goto"
- Sends control signals (Ct) to datapath to perform the appropriate operations

6.7 Operations and Its Control Signals

$$
\begin{aligned}
& \mathrm{A}<=\mathrm{X} \\
& \mathrm{~B}<=\mathrm{Y} \\
& \mathrm{C}<=\mathrm{Z} \\
& \mathrm{~A}<=\mathrm{A}+\mathrm{B} \\
& \mathrm{~B}<=\mathrm{B}+1 \\
& \mathrm{C}<=\mathrm{C}+1 \\
& \mathrm{U}<=\mathrm{A}
\end{aligned}
$$

operation	control
$\mathrm{A} \leftarrow \operatorname{Load}(\mathrm{X})$	Ct_{0}
$\mathrm{~B} \leftarrow \operatorname{Load}(\mathrm{Y})$	Ct_{1}
$\mathrm{C} \leftarrow \operatorname{Load}(\mathrm{Z})$	Ct_{2}
$\mathrm{~A} \leftarrow \operatorname{Add}(\mathrm{~A}, \mathrm{~B})$	Ct_{3}
$\mathrm{~B} \leftarrow \operatorname{INC}(\mathrm{~B})$	Ct_{4}
$\mathrm{C} \leftarrow \operatorname{INC}(\mathrm{C})$	Ct_{5}
Wires	

Hardware components needed:
One adder, two counters, a register

6.7 Datapath

6.7 FSM

- S1: If start' goto S1;
- S2: done $<=0| | \mathrm{A}<=\mathrm{X}| | \mathrm{B}<=\mathrm{Y} \| \mathrm{C}<=\mathrm{Z}$;
- S3: $\mathrm{A}<=\operatorname{Add}(\mathrm{A} ; \mathrm{B})$;
- S4: If $B^{\prime}[7]$ goto $S 3 \| B<=\operatorname{Inc}(B)$;
- S5: If C'[7] goto S3 || C <= Inc(C);
- S : $\mathrm{U}<=\mathrm{A}| |$ done $<=1$ || goto S 1 ;

6.7 Controller Design

	Ct 0	Ct 1	Ct 2	Ct 3	Ct 4	Ct 5	done
state 0	0	0	0	0	0	0	0
state 1	1	1	1	0	0	0	0
state 2	0	0	0	1	0	0	0
state3	0	0	0	0	1	0	0
state4	0	0	0	0	0	0	0
state 5	0	0	0	0	0	1	0
state 6	0	0	0	0	0	0	1

