CSE140 Exercise on April 16, 2009
(I) (Laws and Theorems of Boolean Algebra) Prove using Boolean algebra that $a^{\prime} c^{\prime}+a b+a c+a^{\prime} b^{\prime}=a^{\prime} c^{\prime}+a b+b^{\prime} c$. Write the particular law you are using in each step.
(II) (Laws and Theorems of Boolean Algebra) Prove using Boolean algebra that $(a+c)\left(a^{\prime}+c^{\prime}\right)\left(b^{\prime}+c+d^{\prime}\right)\left(a+b^{\prime}+d^{\prime}\right)=(a+c)\left(a^{\prime}+c^{\prime}\right)\left(b^{\prime}+d^{\prime}\right)$. Write the particular law you are using in each step.
(III) (Karnaugh Map) Use Karnaugh map to simplify function $f(a, b, c, d)=\sum m(0,1,2,3,4,5,7,8,12)+\sum d(10,11)$. List all possible minimal two-level sum of products expressions. Show the switching functions. No need for the diagram.
(IV) (Karnaugh Map) Use Karnaugh map to simplify function $f(a, b, c, d)=\sum m(0,1,2,3,4,5,7,8,12)+\sum d(10,11)$. List all possible minimal two-level product of sums expressions. Show the switching functions. No need for the diagram.
(V) Universal Set of Gates: Check if the set in the following list is universal and explain your decision. Assuming constants 0 and 1 are available as inputs.
i. $\quad\{\mathrm{AND}, \mathrm{NOT}\}$
ii. \{NAND\}
iii. $\{\mathrm{XOR}, \mathrm{NOT}\}$
iv. $\quad\{f(x, y)\}$, where $f(x, y)=x^{\prime} y$
v. $\quad\{g(x, y, z)\}$, where $g(x, y, z)=(x+y) z^{\prime}$
vi. $\quad\{f(x, y), g(x, y)\}$, where $f(x, y)=x^{\prime} y+x y^{\prime}$ and $g(x, y)=x^{\prime} y^{\prime}$

