CSE140 Exercise 4

(I) (Flip-Flops) Implement a JK flip-flop with a T flip-flop and a minimal AND-OR-NOT network. Let us assume that the complements of J, K and Q signals are available. Draw the logic diagram to show your design.
(II) (Design Specification) Write the state table of the sequential circuit as the following figure.

(III) A state machine is described by the following state equations.

$$
\begin{aligned}
& Q_{1}(t+1)=Q_{0}^{\prime}(t) x(t), \\
& Q_{0}(t+1)=Q_{1}(t)+x^{\prime}(t), \\
& y(t)=Q_{1}(t) Q_{0}(t)
\end{aligned}
$$

(1). Write the state table.
(2). Design the system with two JK flip-flops and a minimal AND-OR-NOT network.
IV. In the following circuit, each flip flop has a setup time of 75 ps, a hold time of 30 ps , a clock-to-Q maximum delay of 80 ps , and a clock-to-Q minimum delay of 55 ps . Each AND gate has a propagation delay of 70 ps and a contamination delay of 55 ps , while the NOR gate has a propagation delay of 85 ps and a contamination delay of 65 ps .

a) If there is no clock skew, what is the maximum operating frequency of this circuit?
b) How much clock skew can the circuit tolerate before it might experience a hold time violation?
c) Redesign the circuit so that it can be operated at 3 GHz frequency. How much clock skew can your circuit tolerate before it might experience a hold time violation?
V. Given a three-input Boolean function $f(a, b, c)=\sum m(0,2,4,6,7)+\sum d(1)$.
a. Implement the function using a minimal network of $2: 4$ decoders and OR gates.
b. Implement the function using a minimal network of $4: 1$ multiplexers.
c. Implement the function using a minimal network of $2: 1$ multiplexers.

