(I) (Flip-Flops) Implement a JK flip-flop with a T flip-flop and a minimal AND-OR-NOT network. Let us assume that the complements of J, K and Q signals are available. Draw the logic diagram to show your design.

Step 1: write the next state table
JK flip-flop next state table

\mathbf{J}	K	$\mathrm{Q}_{\text {current }}$	$\mathrm{Q}_{\text {next }}$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

T flip-flop excitation table

T	$\mathrm{Q}_{\text {current }}$	$\mathrm{Q}_{\text {next }}$
0	0	0
0	1	1
1	0	1
1	1	0

Step 2: derive the excitation table from the next state tables
Excitation table

J	K	$\mathrm{Q}_{\text {current }}$	T
0	0	0	$\mathbf{0}$
0	0	1	$\mathbf{0}$
0	1	0	$\mathbf{0}$
0	1	1	$\mathbf{1}$
1	0	0	$\mathbf{1}$
1	0	1	$\mathbf{0}$
1	1	0	$\mathbf{1}$
$\mathbf{1}$	$\mathbf{1}$	1	$\mathbf{1}$

Step 3: derive next state logic
$T=J Q^{\prime}+K Q$

(II) (Design Specification) Write the state table of the sequential circuit as the following figure.

From the circuit we directly get
$\mathrm{T}=\mathrm{x}$
$\mathrm{J}=\mathrm{Q}_{1} \mathrm{Q}_{0}{ }^{\prime}$
$\mathrm{K}=\mathrm{Q}_{1}{ }^{\prime}+\mathrm{Q}_{0}{ }^{\prime}$
$\mathrm{y}=\mathrm{Q}_{1}+\mathrm{Q}_{0}$
We use these equations to get $\mathrm{Q}_{1}(\mathrm{t}+1)$ and $\mathrm{Q}_{0}(\mathrm{t}+1)$:

$\mathrm{Q}_{1} \mathrm{Q}_{0}$	T	$\mathrm{Q}_{1}(\mathrm{t}+1)$	J	K	$\mathrm{Q}_{0}(\mathrm{t}+1)$
00	0	0	$\mathbf{0}$	$\mathbf{1}$	0
00	1	1	$\mathbf{0}$	$\mathbf{1}$	0
01	0	0	$\mathbf{0}$	$\mathbf{1}$	0
01	1	1	$\mathbf{0}$	$\mathbf{1}$	0
10	0	1	$\mathbf{1}$	$\mathbf{1}$	1
10	1	0	$\mathbf{1}$	$\mathbf{1}$	1
11	0	1	$\mathbf{0}$	$\mathbf{0}$	1
11	$\mathbf{1}$	0	$\mathbf{0}$	$\mathbf{0}$	1

Finally, we get the state table:

$\mathrm{Q}_{1} \mathrm{Q}_{0}$	Next sate		Output (y)	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
00	00	10	0	0
01	00	10	1	1
10	11	01	1	1
11	11	01	1	1

(III) A state machine is described by the following state equations.

$$
\begin{aligned}
& Q_{1}(t+1)=Q_{0}^{\prime}(t) x(t), \\
& Q_{0}(t+1)=Q_{1}(t)+x^{\prime}(t), \\
& y(t)=Q_{1}(t) Q_{0}(t)
\end{aligned}
$$

(1). Write the state table.

$\mathrm{Q}_{1} \mathrm{Q}_{0}$	Next sate		Output (y)	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
00	01	10	0	0
01	01	00	0	0
10	01	11	0	0
11	01	01	1	1

(2). Design the system with two JK flip-flops and a minimal AND-OR-NOT network. Derive the excitation table:

X	Current state $\left(\mathrm{Q}_{1} \mathrm{Q}_{0}\right)$	Next state $\left(\mathrm{Q}_{1} \mathrm{Q}_{0}\right)$	J_{1}	$\mathrm{~K}_{1}$	$\mathrm{~J}_{0}$	$\mathrm{~K}_{0}$
0	00	01	0	-	1	-
0	01	01	0	-	-	0
0	10	01	-	1	1	-
0	11	01	-	1	-	0
1	00	10	1	-	0	-
1	01	00	0	-	-	1
1	10	11	-	0	1	-
1	11	01	-	1	-	0

Derive the next state logic:

$\mathrm{J}_{1}=\mathrm{Q}_{0}{ }^{\prime} \mathrm{X}$
$K_{1}=\mathrm{X}^{\prime}+\mathrm{Q}_{0}$
$\mathrm{J}_{0}=\mathrm{Q}_{1}+\mathrm{X}^{\prime}$
$\mathrm{K}_{0}=\mathrm{Q}_{1}{ }^{\prime} \mathrm{X}$

(IV) In the following circuit, each flip flop has a setup time of 75 ps , a hold time of 30 ps , a clock-to-Q maximum delay of 80 ps , and a clock-to-Q minimum delay of 55 ps . Each AND gate has a propagation delay of 70 ps and a contamination delay of 55 ps , while the NOR gate has a propagation delay of 85 ps and a contamination delay of 65ps.

a) If there is no clock skew, what is the maximum operating frequency of this circuit?

The constraint is: $\quad \mathrm{T}_{\mathrm{c}} \geqslant \mathrm{T}_{\mathrm{pcq}}+\mathrm{T}_{\mathrm{pd}}+\mathrm{T}_{\text {setup }}$ In this circuit, the longest path contains the NOR and two AND gates. Therefore, we have:
$\mathrm{T}_{\mathrm{c}} \geqslant 80+85+2 * 70+75=380 \mathrm{ps} \quad \rightarrow \quad$ Max Frequency $=1 / 380 \mathrm{ps}=2.63 \mathrm{GHz}$.
b) How much clock skew can the circuit tolerate before it might experience a hold time violation?

The constraint is: $\quad \mathrm{T}_{\mathrm{ccq}}+\mathrm{T}_{\mathrm{cd}} \geqslant \mathrm{T}_{\text {hold }}+\mathrm{T}_{\text {skew }}$
In this circuit, the shortest path contains only the AND gate at the bottom. Therefore we have:

$$
55+55 \geqslant 30+\mathrm{T}_{\text {skew }} \rightarrow \mathrm{T}_{\text {skew }} \leqslant 80 \mathrm{ps}
$$

c) Redesign the circuit so that it can be operated at 3 GHz frequency. How much clock skew can your circuit tolerate before it might experience a hold time violation?

We can put the second and before the first end since $\left((a+b)^{\prime} c\right) d=(a+b)^{\prime}(c d)$

Now the longest path contains one NOR and one AND gate.
$\mathrm{T}_{\mathrm{c}} \geqslant 80+85+70+75=310 \mathrm{ps} \rightarrow$ Max Frequency $=1 / 310 \mathrm{ps}=3.22 \mathrm{GHz}$.
The shortest paths contains only the NOR gate.

$$
55+65 \geqslant 30+\mathrm{T}_{\text {skew }} \rightarrow \mathrm{T}_{\text {skew }} \leqslant 0 \mathrm{ps}
$$

(V) Given a three-input Boolean function $f(a ; b ; c)=\operatorname{Pm}(0 ; 2 ; 4 ; 6 ; 7)+\operatorname{Pd}(1)$. a. Implement the function using a minimal network of 2:4 decoders and OR gates.
$\mathrm{F}=\mathrm{c}^{\prime}+\mathrm{ab}$

b. Implement the function using a minimal network of 4:1 multiplexers.

$$
F=c^{\prime}\left(a^{\prime} b^{\prime}+a^{\prime} b+a b^{\prime}\right)+a b=c^{\prime}\left(a^{\prime} b+a b^{\prime}\right)+a b \quad / / \text { utilize the don't care } a^{\prime} b^{\prime} c
$$

c. Implement the function using a minimal network of 2:1 multiplexers.

