IV(1). Design a modulo-200 counter with a repeated output.
We know that $2^{7}<200<2^{8}$, so we need 8 bits to represent $0-199$. A modulo16 counter have 4 bits output, so two such counters are enough, with one representing the least significant 4 bits, and the other representing the most significant 4 bits.

The terminal count (tc) signal of the first counter will be sent to the enable port (cnt) of the second counter; consequently, the second counter will count once when the first counter reaches 1111 . Thus the carry could be perform correctly in this way.

Since we want to count the numbers from 0 - 199, the load (ld) signal should be sent to both counters to load 0000 when the number counts to 199 , which is 1100 0111. So we should use an AND gate which takes the signal of $Q_{7}, Q_{6}, Q_{2}, Q_{1}, Q_{0}$ together with the input signal x to generate the load signal for both counters.

IV(2). Design a counter with a repeated output sequence 15, 0, 1, 2, 8, 9, 10, 6,7 , with a modulo-16 counter and a minimal combinational network. Write the Boolean expression and draw the schematic diagram.

From the given the sequence, we can determine the load bit L and the values $I_{3}, I_{2}, I_{1}, I_{0}$ that will be loaded to the counter, according to the current output Q_{3}, Q_{2}, Q_{1}, Q_{0}. The truth table is as follows:

ID	Q_{3}	Q_{2}	Q_{1}	Q_{0}	L	I_{3}	I_{2}	I_{1}	I_{0}
0	0	0	0	0	0	x	x	x	x
1	0	0	0	1	0	x	x	x	x
2	0	0	1	0	1	1	0	0	0
3	0	0	1	1	x	x	x	x	x
4	0	1	0	0	x	x	x	x	x
5	0	1	0	1	x	x	x	x	x
6	0	1	1	0	0	x	x	x	x
7	0	1	1	1	1	1	1	1	1
8	1	0	0	0	0	x	x	x	x
9	1	0	0	1	0	x	x	x	x
10	1	0	1	0	1	0	1	1	0
11	1	0	1	1	x	x	x	x	x
12	1	1	0	0	x	x	x	x	x
13	1	1	0	1	x	x	x	x	x
14	1	1	1	0	x	x	x	x	x
15	1	1	1	1	0	x	x	x	x

Hence, $L=Q_{2}^{\prime} Q_{1}+Q_{3}^{\prime} Q_{1} Q_{0}, I_{3}=Q_{3}^{\prime}, I_{2}=I_{1}=Q_{3}+Q_{2}, I_{0}=Q_{2}$. The K-maps are shown as follows.

V. Design a counter with a repeated output sequence $0,1,2,4,5,6,3$, with a modulo-8 counter and a minimal AND-OR-NOT network. Write the Boolean expression and draw the schematic diagram.

From the given the sequence, we can determine the load bit L and the values I_{2}, I_{1}, I_{0} that will be loaded to the counter, according to the current output Q_{2}, Q_{1}, Q_{0}. The truth table is as follows:

ID	Q_{2}	Q_{1}	Q_{0}	L	I_{2}	I_{1}	I_{0}
0	0	0	0	0	x	x	x
1	0	0	1	0	x	x	x
2	0	1	0	1	1	0	0
3	0	1	1	1	0	0	0
4	1	0	0	0	x	x	x
5	1	0	1	0	x	x	x
6	1	1	0	1	0	1	1
7	1	1	1	x	x	x	x

Hence $L=Q_{1}, I_{2}=Q_{2}^{\prime} Q_{0}^{\prime}, I_{1}=Q_{2}, I_{0}=Q_{2}$ (from K-Maps).

