Sample Midterm \#1 Solution

1. Prove using Boolean algebra that $a^{\prime} c^{\prime}+a b+a c+a^{\prime} b^{\prime}=a^{\prime} c^{\prime}+a b+b^{\prime} c$. Write the particular law you are using in each step.

$$
\text { Proof: } \begin{array}{rlr}
& a^{\prime} c^{\prime}+a b+a c+a^{\prime} b^{\prime} & \\
= & a^{\prime} c^{\prime}+\mathrm{ab}+\left(\mathrm{ac}+\mathrm{a}^{\prime} \mathrm{b}^{\prime}\right) & \\
= & \mathrm{a}^{\prime} \mathrm{c}^{\prime}+\mathrm{ab}+\left(\mathrm{ac}+\mathrm{a}^{\prime} \mathrm{b}^{\prime}+\mathrm{b}^{\prime} \mathrm{c}\right) & \text { consensus } \\
= & \mathrm{a}^{\prime} \mathrm{c}^{\prime}+\mathrm{ab}+\mathrm{ac}+\mathrm{a}^{\prime} \mathrm{b}^{\prime}+\mathrm{b}^{\prime} \mathrm{c}+\mathrm{b}^{\prime} \mathrm{c} & \\
= & \left(\mathrm{a}^{\prime} \mathrm{c}^{\prime}+\mathrm{b}^{\prime} \mathrm{c}+\mathrm{a}^{\prime} \mathrm{b}^{\prime}\right)+\left(\mathrm{ab}+\mathrm{b}^{\prime} \mathrm{c}+\mathrm{ac}\right) & \text { idenpotency } \\
= & \left(\mathrm{a}^{\prime} \mathrm{c}^{\prime}+\mathrm{b}^{\prime} \mathrm{c}\right)+\left(\mathrm{ab}+\mathrm{b}^{\prime} \mathrm{c}\right) & \\
= & \mathrm{a}^{\prime} \mathrm{c}+\mathrm{ab}+\mathrm{b}^{\prime} \mathrm{c} & \text { consensutativity+ associativity } \\
& \text { idenpotency }
\end{array}
$$

2. Prove using Boolean algebra that $(a+c)\left(a^{\prime}+c^{\prime}\right)\left(b^{\prime}+c+d^{\prime}\right)\left(a+b^{\prime}+d^{\prime}\right)=(a$ $+c)\left(a^{\prime}+c^{\prime}\right)\left(b^{\prime}+d^{\prime}\right)$. Write the particular law you are using in each step.

Proof: $\quad(a+c)\left(a^{\prime}+c^{\prime}\right)\left(b^{\prime}+c+d^{\prime}\right)\left(a+b^{\prime}+d^{\prime}\right)$

$$
\begin{array}{ll}
=(a+c)\left(a^{\prime}+c^{\prime}\right)\left((a c)+\left(b^{\prime}+d^{\prime}\right)\right) & \\
=(a+c)\left(a^{\prime}+c^{\prime}\right) a c+(a+c)\left(a^{\prime}+c^{\prime}\right)\left(b^{\prime}+d^{\prime}\right) & \\
=(a+c)\left(a^{\prime} a c+c^{\prime} a c\right)+(a+c)\left(a^{\prime}+c^{\prime}\right)\left(b^{\prime}+d^{\prime}\right) & \\
=(a+c)(0+0)+(a+c)\left(a^{\prime}+c^{\prime}\right)\left(b^{\prime}+d^{\prime}\right) & \text { distributibutivity } \\
=0+(a+c)\left(a^{\prime}+c^{\prime}\right)\left(b^{\prime}+d^{\prime}\right) & \\
=(a+c)\left(a^{\prime}+c^{\prime}\right)\left(b^{\prime}+d^{\prime}\right) &
\end{array}
$$

3. Use Karnaugh map to simplify function $f(a, b, c, d)=\sum_{m(0,1,2,3,4,5,7,8,12)}$
$+\sum d(10,11)$. List all possible minimal two-level sum of products expressions.
Show the switching functions. No need for the diagram.

4. Use Karnaugh map to simplify function $f(a, b, c, d)=\sum_{m(0,1,2,3, ~ 4, ~ 5, ~ 7, ~ 8, ~ 12) ~}^{\text {m }}$
$+\Sigma d(10,11)$. List all possible minimal two-level product of sums expressions.
Show the switching functions. No need for the diagram.

$$
\mathrm{F}=\left(\mathrm{a}^{\prime}+\mathrm{d}^{\prime}\right)\left(\mathrm{a}^{\prime}+\mathrm{c}^{\prime}\right)\left(\mathrm{b}^{\prime}+\mathrm{c}^{\prime}+\mathrm{d}\right)
$$

5. Universal Set of Gates: Check if the set in the following list is universal and explain your decision. Assuming constants 0 and 1 are available as inputs.

Solution: We know \{AND, OR, NOT\} is universal. If we can construct these three gates using the ones from the gate set we are checking, then the gate set under checking is also universal.
i. $\{$ AND, NOT $\}$

AND, NOT already exist, only need to construct OR

ii. \{NAND\}

iii. $\quad\{\mathrm{XOR}, \mathrm{NOT}\}$

Not universal, because AND or OR can not be constructed using XOR \& NOT
iv. $\quad\{f(x, y)\}$, where $f(x, y)=x^{\prime} y$

v. Universal, because ($x+y$) z' can easily reduce to $x z^{\prime}$ or $y z '$ by connecting 0 to y or x. We have already proven that $x z$ ' is a universal gate in iv.
vi. Universal, because $g(x, y)=x^{\prime} y^{\prime}=(x+y)^{\prime}$. The NOR gate is a universal gate.

