CSE140L Exercise

- 1. Use CMOS complementary logic to implement the following functions. Draw the circuit to show your design.
- a) f(a) = a'.
- b) f(a,b) = (ab)'.
- c) f(a,b,c) = (ab+c)'.
- 2. Design a 3-bit asynchronous counter with D flip-flops.
 - a) Show the logic diagram.
 - b) Suppose we want to increase the bit width, what is the limiting factor of the counter size? Explain your solution.
- 3. Given a Mealy machine as described by the following state table. Transform the Mealy machine to a Moore machine. Write the state table.

PS	x=0	x=1	
A	A, 1	B, 0	
В	C, 1	F, 1	
C	A, 1	E, 0	
D	B, 0	E, 0	
Е	E, 1	D, 1	
F	E, 0	F, 0	
	NS, z		

4. Assume a computer system has a simple instruction set described as follows:

Command	2-bit	6-bit	Description
	Instruction	Data	
Move1	00	$m_5 m_4 m_3 m_2 m_1 m_0$	Move data $m_5m_4m_3m_2m_1m_0$ to register R1.
Move2	01	XXXXXX	Move data in register R1 to register R2.
Add	10	XXXXXX	Add the content of R1 and R2 and store the
			result back to R1.
Shift	11	$XXXm_2m_1m_0$	Left shift (NOT rotate) the content of R1 by
			$m_2m_1m_0$ bits and store the result back to R1.

The registers block has two 6-bit input data ports: M[5:0] and D[5:0]; the former is from the memory source and the latter is from the datapath. The outputs of R1 and R2 are connected to datapath as well as data port D[5:0]. However, the communication between R1 and R2 can be performed inside the registers block. The Control signals R1_en and R2_en are the enable signals for R1 and R2 respectively. Control signal R1_sel is used to select the sources of R1.

a) Complete the following table which describes the function of the registers block:

R1_en	R2_en	R1_sel	clk	R1[5:0]	R2[5:0]
1	0	0	↑	M[5:0]	No Change
1	0	1	1		
0	1	X	1		

- b) Write the truth table of the instruction decoder (control subsystem). Use the 2-bit instruction as inputs and R1_en, R2_en, R1_sel as outputs.
- c) Complete the following program that performs the multiply-by-33 function. By the end of the program you should have data $33* a_5 a_4 a_3 a_2 a_1 a_0$ stored in R1 (assume no overflow; you must write out ALL the instructions)..

move1 a₅**a**₄**a**₃**a**₂**a**₁**a**₀ -- move data a₅a₄a₃a₂a₁a₀ into R1