Theory of Computation — CSE 105

Computability Study Guide

Chapter 3: The Church–Turing Thesis

- 1. Exercises: 3, 6, 7, 8 Page 147.
- 2. Problems: 9-15, 19, Page 149.

Chapter 4: Decidability

Problems: 10-22, Page 169-70.

Chapter 5: Reducibility

- 1. Problems: 9-16, Page 195.
- 2. Suppose L is recursively enumerable but not recursive. Show that for any Turing machine T accepting L, there must be infinitely many input strings x for which T loops forever.
- 3. Is the following statement true or false? If L_1, L_2, \ldots , are recursively enumerable subsets of Σ^* , then $\bigcup_{i=1}^{\infty} L_i$ is recursively enumerable.
- 4. Sketch a proof that if L_1 and L_2 are recursively enumerable subsets of Σ^* , then both L_1L_2 and L_1^* are recursively enumerable.
- 5. Show that there exists a language L so that neither L nor \overline{L} (the complement of L) is recursively enumerable. Can you give an example of such a language?
- 6. Show that the following problems are unsolvable. For a Turing machine T, L(T) denotes the language accepted by T.
 - (a) Given a Turing machine *T* and a nonhalting state *q*, does *T* ever enter state *q*, starting with an empty tape?

- (b) Given a Turing machine T, does it accept more than one string?
- (c) Given two Turing machines T_1 and T_2 , is $L(T_1) \subseteq L(T_2)$?
- (d) Given a Turing machine T, is the language T accepts regular?
- (e) Given a Turing machine *T*, is the language it accepts the complement of a recursively enumerable language?
- 7. Show that the language $L_{\varepsilon} = \{ \langle T \rangle | T \text{ halts on input } \varepsilon \}$ is not recursive but recursively enumerable.
- 8. Show that the language $L_{\varepsilon} = \{ \langle T \rangle | T \text{ accepts } \emptyset \}$ is not recursive.