Theory of Computation - CSE 105

Regular Languages
Solutions to Homework 1

Problem 1

Design finite state automata and regular expressions for the following languages:
L; = {w : w does not contain the substring 110}
Ly = {w : w contains an even number of 0’s or exactly two 1’s}

Note: Since we want to design some finite state automata for the above languages, we can choose
to use DFAs or NFAs for that purpose. There are naturally several correct constructions possible,
but choosing a suitable finite state automaton makes the task easier and the construction more
apparent. The “suitable” choice depends on the given language. Generally however you will find
it easier to design a DFA for a language that is the complement of some language whose DFA is
easy to constuct, while properties like union, closure, concatenation (and infact most operations
that involve modification of a DFA or NFA) are easier to capture using NFAs.

It is clear that it is easy to construct a DFA for the complement of L;. so all that we need to do
is to construct a DFA for L; and then switch the role of the accept/reject states. We need just 4
states: g; is the start state, g records that the last symbol seen was a 1 (and that either the symbol
before that was a 0 or that the last symbol read was the first symbol of the string), g3 records that
(atleast) the last two symbols seen have been 1’s and g4 records that the substring 110 has been
seen.

Figure 1: A DFA recognizing L

The regular expression representing L; is given by:
(Ou10)*1*

This can be derived either directly or by the translation algorithm given in Lemma 1.32, page 69
of text.

In this problem we need to essentially perform the union of 2 languages - one that has an even
number of (’s and the other that has exactly two 1’s. There may have been some ambiguity here as
to whether we meant “contains exactly two 1’s in the string” (intended interpretation!) or whether
“the language is the string 11”7. In either case the use of nondeterminism here leads to an easy to
verify construction. We need a 2-state NFA (one state records that it has seen an even number of
0’s and the other does the same for an odd number of 0’s) for the language that contains an even
number of 0’s. We need a 3-state NFA (each state recording the number of 1’s seen in the string)
for the language of exactly two 1’s. The union of these can be accomplished using e-transitions in
the straightforward way.

Figure 2: An NFA recognizing Lo

The regular expression representing Lo is given by:

(1U01%0)* U (0*10*10%)

Problem 2
Let

s={0) 1) 6]

Here, >, contains all columns of 0’s and 1’s of height two. A string of symbols in), gives two
rows of 0’s and 1’s. Consider each row to be a binary number and let

C = {w € Y, |the bottom row of w is three times the top row}.

Show that C' is regular.

Proof idea:

In order to to prove that C is regular, we need to construct a DFA or NFA or RE (Regular
Expression) that recognizes this language. To do so, we can use the property that regular languages
are closed under reversal and read the input backward, i.e. start with the low order bits, and
remember that multiply by 3 in binary is equivalent to add the multiplicand with the result of
shifting the multiplacand itself to the left by 1 bit. For example, three times 111 (7) is equal to
111 plus 1110 (14) which is 10101 (21). So, if we represent the top and bottom rows of a string
w that is in the language by T}, T,—1 ... T1 Ty and B, B,_1 ... B By, respectively, they must
satisfy the following condition:

Ty To1 ... T1 To
Tor Tyo ... Ty O
B, B._1 ... B B

As we can see, any valid input string must have By = Ty. However, the relations between B;
and T; for ¢ > 1 are not as simple as for 1 = 0. Actually, a valid value for B; will depend on the
values of T; and T; 1 as well as whether or not there exists a carry-in cﬁ" (which is equal to the
carry-out ¢! from the previous sum). The following logical equations describe exactly how they

are related (check it out!):

Bi = T,@T—1®c" .
(TiNT; 1) V (TiVTi) At = g™

(2

i1
Cit1

Besides that, it can be easily seen that a valid input also requires that cﬁ{fH =% =0 and T;, = 0.

Therefore, in order to prove that C is regular, we need a DFA with a total of 4 states (not
taking into account the sink state) to keep track of all possible combinations of cé” and T;_1 and,
for each of these states, there will be exactly two possible valid output transitions depending on

whether 7; is equal to 0 or 1 (the corresponding value of B; will be given by the above equation).

Proof:
Let ¢;; denote the state for which the carry-in is equal to ¢ and the previous symbol seen at the
top is equal to j and let ¢y, denote the sink state. Then, the following DFA recognizes C.

Figure 3: DFA for C (the transition from the sink state to itself was omitted)

Proof of correctness:
In order to prove the correctness of this construction, we need to consider two cases:

e w ¢ C and there exists some i such that B; #T; ® T;—1 & c::"

In this case, as soon as this occurs, the DFA will reach the sink state and the input string w
will be rejected.

e w ¢ C and for all 4, Bi:TZ-EBTi_l@cé”

In this case, either the carry-out from the last sum c2% = cﬁﬁ_l = 1 or the last symbol seen

at the top T}, = 1. In both cases, the DFA will end up in one of the states go1, g19, or g11 and
the input string w will be rejected.

e w € C This can only happen if for all ¢, B; =T, ®T;_1 & cé" and ¢t = CZEH =T, = 0. But,
whenever this occurs, the DFA will end up in the state gog and the input string w will be
accepted.

Because the given DFA will accept all strings in C' and reject all strings not in C, we just proved
C is regular.

Problem 4.a

Show that PRIMES = {a™ | n is a prime} is non-regular.

Proof: We’re going to proceed by contradiction as usual. Assume PRIMES is regular and then
pick some string s € EE whose length is at least p, the pumping length. In this case, we don’t have
much of a choice since alphabet is unary. So, let s = 0¥ where p' is some prime number greater
than or equal to p. Because s € E and |s| = p' > p, s can be broken into three parts, s = zyz,
satisfying the following conditions:

1. for each i > 0,zy'z € E;
2. |y| > 0; and
3. |zyl <p.

Because |zy| < p and |y| > 0, y = 07 for some 0 < j < p. The idea here is to choose i, the
number of times you're going to pump up, so that |zy’z| is not a prime. Let i = p'+1 (we're adding
y p' times). Then zy? T1z = 0P 177 = (»'(1+4) ¢ PRIMES since its length is a not a prime. As a
result, PRIMES cannot be regular.

S s-{[a] [T e A

Here, >, contains all columns of 0’s and 1’s of height two. A string of symbols in), gives two
rows of 0’s and 1’s. Consider each row to be a binary number and let

E = {w € Y, |the bottom row of w is the reverse of the top row}.

Show that E is not regular.

Proof: Let us assume towards a contradiction that E is regular. We will use the pumping lemma,
to derive a contradiction.

Refer to Theorem 1.37, page 78 of the text. Let p be the “critical length” given by the theorem.
P 2
1- .
? 0 This string is, by definition of the language, contained
in the language. Now since s € A and clearly |s| > p, the theorem says that it may be written as
s = zyz such that the three conditions of the theorem hold. Condition 3 says that |zy| < p. Since

01"[17 01" 01" *[17”
s:l][],itmustbethatxyz[ll andz:[] []forsomekgp. Say

Let us choose the string s =

1 0 1 0

p

bl

k—m m
T = l (1)] and y = [(1)] . Condition 1 of the theorem holds for any 7 > 0. We choose 7 = 2.
0 k—m
Now consider the string s’ = zy?z. This is s’ = l]

02m_0k+m0p—k1
1 1] #7711 1 0

and condition 1 says it is in A. But condition 2 of the theorem tells us |y| > 0, meaning m > 0.
But then it is clear that s’ is in fact not in A, because p +m > p and s’ will have more leading

l (1)]’s than l (1)]’s. This means that the bottom row will have more 1’s than the top row (and

that the top row will have more 0’s than the bottom row). This means that the bottom row cannot
be the reverse of the top row. This is a contradiction. Hence it must be that E is not regular.

