Theory of Computation — CSE 105

Computability Theory
Solution to Homework 3

1. Let A= {(M)| M is a DFA which doesn’t accept any string containing an odd number of 1s}.
Show that A is decidable.

Solution: We can prove that this language is decidable by constructing a Turing machine M that
decides A.

M will try to accept all strings of length less than or equal to 2k, where k is the number of states
in the DFA. If none of these strings has an odd number of 1s, then we claim that the DFA doesn’t
accept any strings with an odd number of 1s. The reason is as follows.

By restricting the size of the input to be less than or equal to twice the number of states in the
DFA, the only strings we are eliminating from consideration are those for which there is a state
which is entered more than twice. (That is, if s is a string with more than 2k symbols, then there
must be some state ¢ which appears more than twice in the execution of A on s).

The reason we may exclude such strings from consideration is as follows: let s be the smallest string
which has length greater than or equal to 2k. Then there must be some state ¢ which is entered
three or more times (see figure 1). Let s = abcd, where:

a is the sequence of symbols accepted between the start state and the first occurence of state
q,

b is the sequence of symbols accepted between the the first occurence of state g and the second
occurence of state g,

¢ is the sequence of symbols accepted between the the second occurence of state ¢ and the
third occurence of state ¢, and

d is the sequence of symbols accepted between the the third occurence of state ¢ and the
accept state.

Let A, B, C, and D be the number of 1s in a, b, ¢, and d, respectively. Then, the following claim
holds.
Claim: There exist a string ¢ such that |¢| < |s|, ¢ contains an odd number of 1s, and ¢ € L(A).

Proof: A+ B+ C + D is equal to the number of 1s in s. So, A+ B + C + D is odd. Then, there
are four cases to consider depending whether B and C' are odd or even numbers:



Figure 1: Example showing how the strings a, b, ¢, and d are related to s.

B and C are both odd. In this case, B 4+ C is even. So A + D must be odd. So, let ¢ = ad.

B is odd and C is even. In this case, B + C is odd. So A + D must be even. So, let ¢t = abd.

e Biseven and C is odd. In this case, B + C'is odd. So A + D must be even. So, let ¢ = acd.

B and C are both even. In this case, B + C' is even. So A + D must be odd. So, let ¢t = ad.

In all cases, ¢t has an odd number of 1s and [t| < |s|.

Theorem 1 If s is a string accepted by a DFA G such that s > 2k and s contains an odd number
of 1s, then there is a string t such that t € L(G), |t| < 2k, and t contains an odd number of 1s.

Proof: It follows easily from claim above.

Now that we have proved theorem 1, we are finally in a position to give a description of a Turing
machine T 4 that decides A.

T4 = “Given a string, s,

1. Check if s is of the form (G) for some DFA G and em reject if it’s not.

2. For every string s’ € >_* which has length less than or equal to twice the number of states in
G and which contains an odd number of 1’s.

(a) Run G on s'. If G accepts s, then reject s.

3. Accept s.



2. Let Lgypy = {(Th,T2)| Th and T are Turing Machines and L(T1) C L(T5)}. Show that Ly is
undecidable.

Solution: We will proceed by contradiction. Assume that L, is recursive. Let Ty be a TM
that decides Lgy,. We will now show that the undecidable halting language Ly = {(T,z)| T halts
on input w} is decidable to obtain the desired contradiction.

With the help of T, we will now design a Turing machine Ty to decide Ly. The description of
Ty is given below.

Ty = “Given a string, x,

1. Check if z is of the form (T',w) for some TM T and input w € ¥*.
2. If not, reject and halt.
3. If true, construct the description of a TM T3 given 1" and w such that

T; = “Given a string, y,

(a) Simulate (or run) T on w
(b) Accept y if and only if 7" halts on w.”

Comment: The description of 77 depends on T and w which in turn depend on z. Also
observe that L(T}) = £* if T halts on w and L(T}) = 0 if T does not halt on w. Also notice
that Ty is only constructing the description of 77 rather than running it.

4. Construct a TM T5 such that T5 accepts no input string.
Comment: L(T) = 0.

5. Input (71,75) to the TM Tyyp.
6. If T, accepts, reject and halt.

7. If Tgyp rejects, accept and halt.”

Claim: Ty decides L.

Proof: We will show that Ty will accept for inputs z € Ly and will reject for inputs z ¢ L.

e case x € Ly: Since x € Ly, x must be of the form (T, w) for some TM T and input w.
Moreover T must halt on w. When such a z is given as input to Ty, = will pass the test in
step 1 and Ty will proceed to step 3. In step 3, the TM T} constructed by T must be such
that L(T) = ¥* since T halts on w. In step 4, Ty will be constructed such that L(T%) = 0.
In step 5, since L(T1) = ¥* and L(T2) = (), Tsyup will reject and in step 7 Ty will accept as
required.

e case z ¢ Ly: Since z ¢ Ly, either z is not of the form (T, w) for any TM T and input w
or z is of the form (T, w) for some TM T and input w and 7" does not halt on w. In the
first case, Ty will reject since z fails the test in step 1. If z is of the form (T, w) for some



TM T and input w and T does not halt on w, then z will pass the test in step 1 of Ty and
the control passes to step 3. In step 3, a TM T will be constructed such that L(T}) = ()
since T does not halt on w. The TM T, constructed in step 4 is such that L(T:) = ). Since
L(Th) C L(T3), Tsyp will accept in step 5. Finally, in step 6, Ty will reject as required.

Thus, Ty decides Lg. This is a contradiction to the fact that Ly is undecidable. Hence, Ly, is
undecidable.



3. Give an example in the spirit of the recursion theorem of a program in a real programming
language that prints itself out.

Solution: Here is a program in C:

#include <stdio.h>

charxa = "; \n\
void \n\
main() \n\
{ \n\
char* b; \n\
\n\
printf(\"#include <stdio.h>\\nchar*a = \\\"\"); \n\
for (b=a;*b;b++) \n\
{ \n\
if (xb==’\\\"’ || *b=="\\\\’) \n\
putchar (’\\\\?); \n\
if (xb==’\\n’) \n\
{ \n\
printf (\"\\\\n\\\\\") ; \n\
} \n\
putchar (*b) ; \n\
} \n\
putchar (’\\\"?); \n\
puts(a); \n\
} \n\
void
main()
{
charx b;

printf ("#include <stdio.h>\nchar*a = \"");
for (b=a;*b;b++)
{
if (*b==’\"" || *b=="\\’)
putchar (’\\’);
if (*b==’\n’)
{
printf ("\\n\\");
}
putchar (*b) ;
}
putchar(’\"?);
puts(a);



How this program works:

1. Create a string, a, whose contents are described below.
2. Print out the code before the declaration of a.

3. Print out the string a, placing a slash before each quote in a, and a slash before each carriage
return in a, and a slash before each slash in a.

4. Print out a single quote.

5. Print a.

Comment: a contains the code which performs instructions 2,3,4,5.

This program prints the string, a, twice. The first time it prints a, it prints it as though it were a
string. The second time, it prints it normally. In this sense, the program is roughly equivalent to
the following english instructions:

”Print the preceding sentence twice, the first time in quotes.”

Print the preceding sentence twice, the first time in quotes.

The interested reader may wish to consider how to modify this program in order to make it equiv-
alent to the following English instructions:

Print the following sentence twice, the second time in quotes:

”Print the following sentence twice, the second time in quotes.”



