Theory of Computation - CSE 105
 Section A
 Quiz 1
 July 7, 1999

Time: 30 Minutes
Maximum Points: 10

NAME:

Student ID:

Answer the following questions:

1. $\mathbf{4}$ points Write a deterministic finite automaton to recognize each of the following languages.
$L_{1}=\left\{w \in\{a, b\}^{*} \mid\right.$ each a in w is immediately preceded and immediately followed by a $\left.b\right\}$.
$L_{2}=\left\{w \in\{a, b\}^{*} \mid w\right.$ has both $a b$ and $b a$ as substrings $\}$

2. 3 points Show that if L is a regular language, then so is L^{R} where $L^{R}=\left\{x^{R} \mid x \in R\right\} . x^{R}$ is the reverse string of the string x. Present a cogent argument outlining the main ideas.
Hint: Make use of nondeterminism.
Since L is a regular language there is a NFA, say A accepting it. To obtain $A_{L^{R}}$ (an automaton accepting L^{R} we proceed as follows:
(a) the states of $A_{L^{R}}$ are the same as of A
(b) the alphabet is the same
(c) the transition function is obtained by reversing all arrows in A
(d) to obtain the initial state of $A_{L^{R}}$ add a new state and add ϵ-transitions too all states which were final states in A. The newly added state is the initial state of $A_{L^{R}}$.
(e) there is only one final state, namely the state which was initial state in A

Why this works:
A word is accepted in $A_{L^{R}}$ if there is a path from the initial state to the final state. But given the construction this means that in A there is a path from the initial state to one of the final states. Therefore if $w \in L\left(A_{L^{R}}\right)$ if $w^{R} \in L$.
The above argument works the other way around, therefore $w \in L$ implies $w^{R} \in L\left(A_{L^{R}}\right)$. This proves that $L\left(A_{L^{R}}\right)=L^{R}$
3. $\mathbf{3}$ points Design a nondeterministic finite automaton for the following language.

$$
L=\left\{x \in\{0,1\}^{*} \mid x \text { has } 101 \text { as a substring }\right\}
$$

