Theory of Computation - CSE 105, Fall 1998

Regular Languages
SampleProblemsandSolutions

Notes: Thealphabein all problemss {0, 1} unlessexplicitly mentionedtherwise.

1 Deterministic Finite Automata (DFA)

Problem 1 - Designing DFAs

Definethelanguagel; to be

L; = {w : w containseither000 or 010 asa consecutie substring

Give the statediagramof a DFA with at mostfive stateshat recognizeshe languageL,, andgive a
formalproof of the correctnessf your construction.

Strategy: Wefirst try to determinewhatwe needto rememberbouta stringaswe arereadingit. In this

casewe would needthe following states:a startstate,a statein which we have just seena 0. Thenstates
thathave justseend0 and01. And finally a statethathasseeneithera 000 or a010. Thiswill beouraccept
state.Notethatit sufiicesto have onestaterepresenboth000 and010, sinceall thatmatterss thatwe need
to acceptboth.

Construction: Thefollowing DFA recognized.; .

Figurel: A DFA recognizingL,



Correctness of Construction: We needto give a formalagumentproving thatthe DFA constructedor
L, acceptsall andonly thosestringsthatarein L,. The proof,thus,hastwo subproblems

1. Provethatfor ary stringz in L., z is acceptedy the constructedFA
2. Provethatfor ary stringx notin L1, z is notacceptedy the constructedFA

To getanideafor how to solve subprobleml, recognizethat we aretrying to prove that a specific
property(acceptancéy the constructedFA) holdsfor all elementf aninfinite set(L1). Thisis exactly
the type of problemfor which proof by inductionis designed seepage23 of the text). Subproblen® fits
the samemodelassubprobleml, sincethe complemenbf L is alsoaninfinite set. Hence,we canprove
the constructiorcorrectby giving inductive proofsfor subproblemd and2.

Subproblem 1 - Proof by Induction In orderto constructan inductive proof, we needto choosean
appropriatevariableto performinductionon. Thatis, we mustfind somefunction definedfor all = in L
thatmapsL; to thesetof integers. As every stringin L; hasalengthwhich is anintegervalue,the length
functionis suitable.Hence Jet [, bethelengthof astringz. We shallperforminductionon thevariablel,.

Basis TheconstuctedFA acceptall ¢ in L, suchthatl, <= 3.

Whenl, <= 2,thebasisclaimis vacuouslyruesincethedefinitionof L, stateghatall elementsontain
either000 or 010 asasubstringpothof which have alengthof 3 > 2.

Wheni, = 3, x mustbeeither000 or 010, asno otherstring of length3 canpossiblybein L. We need
to shaw thatthe constructedFA acceptoth 000 and010. Fromthe startstate,q;, the string 000 moves
the DFA alongthe following path of states. ¢1 — g2 — g3 — ¢5. Sincegs is an acceptstate,the DFA
acceptghe string 000. Similarly, the string 010 causedransitionsalongthe path: ¢ — g2 — q1 — ¢s.
Again, sincegs is anacceptstate the DFA acceptghestring010.

Having shavn thatthe constructedFA acceptsall z in L; suchthatl, <= 3, we may concludethat
thebasisof theinductionis true.

Induction Step Assumethat the constuctedDFA acceptsall « in Ly suchthatl, =k >= 3. Then,the
constructedFA acceptsll stringsz in Ly suchthatl, =k +1.

Let z beary stringin L; suchthati, = k + 1. Sincel, > 2, thereexists somestringy in >-* suchthat
eitherz = y0 or z = y1. Thestringy is eitherin L; ornotin L;.

If y isin L; then, by the inductive hypothesisijt is acceptedy the constructeddFA. The stringsy0
andy1 mustalsobe acceptedy the sameDFA, sincethe DFA will bein acceptstategs afterprocessingy
andsincethereareno transitionsfrom g5 to anotherstate.Hence,z is acceptedy the DFA wheneer y is
acceptedy it.



If, ontheotherhand,y is notin L, then,sincewe assumed: is in L1, thereexistssomestringw in >_*
suchthatx = y0 andeithery0 = w000 or y0 = w010. Processinghe prefix string,w, may leave the DFA
in ary state(rememberwe have not madeary claimsaboutthe behaior of the DFA on stringsthatarenot
in Lq). Thus,we needto shawv thatthe acceptstateis reachabldrom ary otherstateon input 000 or 010.
Thereare10 caseq5 DFA statesX 2 choicesfor w), eachof which the reademay easilyverify leave the
DFA in theacceptstate.It follows thatx is acceptedy the DFA whetheror noty isin L.

Since,givenz in Ly suchl, = k + 1, we have shavn that the inductive hypothesismplies that z is
acceptedy the constructedFA, we may concludethatthe constructedFA acceptsll z in L.

Subproblem 2 - Proof by Induction Theinductive proof for this subproblems very similar to the one
givenfor Subproblem. It is left asanexercise.

Problem 2 - Designing DFAs

Give the statediagramof a DFA thatrecognizeshelanguagel., whereL, is givenby

Ly = {w: whas3k + 1 1’sfor somek € N'}.

Figure2: A DFA recognizingLs



Problem 3 - Closure Properties of Regular Languages: Closure under Reversal

(Problem1.24,page88 of thetext) For ary stringz = z1z . . . z,, thereverseof z, written z, is thestring
T in reverseorder z,, ... zoz1. For ary languaged, let A® = {z® : z € A}. Shaw thatif A is regular so
is AR,

Given: Aisregular SothereisaDFA M = (Q, X%, 4, qo, F') thatacceptsA.
Want: To shaw that A™ is regular We do this by constructingagnNFA M7* thatacceptsA”.

Proof idea: Thebasicideais thatwe wantto modify the DFA M to “run backwards” on aninput string

of AR. We cando this by “reversingthe transitionarrans” in the original DFA. The original startstate
becomeghenew final state.Similarly, we would like the original final state€o becomeahenew startstates.
However, sincewe areallowed only onestartstate we needto adda new statewhich will alsobe our nev

startstatewith e transitiongo all the original final states.

Construction:  Constructa machineM’ = (Q U s, %, 6%, s,qq), wheres ¢ @ is a new startstatewe
introduce.Definethe new transitionfunctionsuchthatfor everyq € @ ando € ¥,

0%(g,0) ={r € Q:48(r,0) =q}

Also, let 6% (s,€) = F. We claimthat M™ is anNFA thataccepts4.

Correctnessof Construction: Considersomez = z; ...z, € A®. We areinterestedn thebehaiour of
M7™ onz. By definitionof AR wehave z™ = z,,... 21 € A. Assumethatqy . . . ¢, arethestatesn Q that
arefollowed oninput z® in M. Thenby our constructionwe have thats, ¢, . . . go is a pathon input z in
M?™. Sincethisis avalid pathendingin anaccepistate we have that M acceptse.

Now, letslook at the behaiour of M® onsomez = z; ...z, ¢ AR, We mustshawv thatthereis no
acceptingoathin M® oninputz. Again, by definitionof A%, we have thatz® = z,,...z; ¢ A. Weargue
by noting thatif therewasan acceptingpathin M™ oninput z thenreversingit would yield anaccepting
pathin M oninputz™. However, sinceM doesnotacceptz®, we know thattherecanbeno acceptingpath
in M oninput z.



Problem 4 - Closure Properties of Regular Languages: Closure under &

If A, B arelanguagesywe defineanew language
A® B ={z:z € Aorx € B butnotboth

Shaw thatthe classof regularlanguagess closedunderthis operation.
Given: A andB areregular
Want: ToshavthatA & B isregular

Proof idea: While we cansolve thisvia DFA or NFA constructionsit is considerablyeasierto do this by
invoking only known closurepropertiesof regularlanguagesThe maintrick hereis to obsere that

A®B=(AUB)—(AnB)=(AUB)N(ANB)

Now we canusethefactthatregularlanguagesreclosedunderunion,complementatioandintersection
to arguethat A & B is regular.

Construction:  Considerthe following languages:L; = (AU B), Ly = (AN B), Ly = Ly andL =
Ly NLs. Wehave A @ B = L. Weclaimthat L is regular

Correctness of Construction: SinceA and B areregularandregularlanguagesreclosedunderunion,
Ly isregular SinceA and B areregularandregularlanguagesreclosedunderintersection,Ls is regular
SincelLs is regularandregularlanguagesreclosedundercomplement[s is regular Sincel; and L3 are
regularandregularlanguagesreclosedunderintersection L is regular Sincel. = A @ B we have thatthe
classof regularlanguagess closedunderthe @ operation.



Problem 5 - Closure Properties of Regular Languages. Closure under Hamming Distance

Forary setA C {0,1}* andk < 0, define
N(A) = {z|H(z, A) <k},

the setof stringsof Hammingdistanceat mostk from A. Prove thatif A C {0,1}* is regular, thensois
Ny(A).

Main idea: If A isregular, thenthereis a deterministicfinite automatonM thatrecognizesd. To shav
that N2 (A) is regular, then,all we have to do is shav thatwe canuse M to build a nev machineM’ that
recognizesN,(A). The generalideais to take the DFA M andtransformit into an NFA that allows the
optionof flipping up to two input bits but otherwiseprocesseaninput stringin exactly the sameway asM
does.This canbedoneby having M’ containthreecopiesof M with the additionof transitionsfrom copy
1 to copy 2 allowing theflipping of onebit andthe additionof transitionsfrom copy 2 to copy 3 allowing
theflipping of oneotherbit. Then,in additionto acceptingall stringsacceptedy M, thenew machinewill

alsoacceptall stringsin A with eitherl or 2 bits flipped.

Simpleexample: SupposéV! is thefollowing machine:

—(U-0OL 0

0

Let the languagerecognizedby this machinebe called A. Thenthe following machinewill accept
NQ(A):



This machineacceptghe samestringsasthe previous machine put it allows up to two bitsin theinput
stringto beflipped.

Theformal construction: GivenM = (Q, %, , qo, F'), where@ = {s1,...,s,},

e Make threecopiesof M, namedM,, M, and M3, where M; = (Q;, X, 0;, ¢i 0, F;) is createdby
replacingeachstates; of M with s; ;.

e Createthe new machineM’ thatcombineshemsothat M’ = (Q', %, ¢, g, F'), where@ = @1 U
Q2 U Q3,9) = q10, andF’' = F; U F, U F3. Firstjust copy the transitionfunction: ¢'(s; j, o) =
di(si,5,0) (e.g.if My containsthetransitiond; (¢1,5,0) = ¢i1,10, addthetransitiond’(¢,5,0) = q1,10
to M').

e Add thetransitionsnecessaryo allow bit flipping asfollows. For eachtransitiond’(s,j,0) = s,
adda new transitiond’ (s j, 1) = so. Likewise, for eachtransitiond’(s1 j,1) = s1, addanew
transitiond’ (s1,j,0) = so .

¢ Do thesameadditionof transitionsfrom machine2 to machine3, i.e. for eachtransitiond’ (s j,0) =
so,k, addanew transitiond’ (s, ;, 1) = s3 x; for eachtransitiond’(sz, j, 1) = s2,k, addanew transition
(5’(82’]',0) = 83,k-

Proof of correctness:  To shav thatfor aDFA M thatrecognizes4, thenenw NFA M’ recognizesV,(A),
we mustarguethatif z € No(A), M’ acceptse, andif z ¢ Ny(A), M’ doesnotacceptr.



e If z € No(A), thendy € A suchthatH(z,y) < 2. If H(z,y) = 0 thenz € A, andthe M, partof
M’ will acceptr sinceM; containsall thetransitionsandacceptstatesof M. If H(z,y) = 1, thenz
differsfrom y € A in only oneposition,so M; canprocesse up until it reacheshe symbolatwhich
z differsfrom y, switchto M,, andcontinueprocessingherestof x asif it wasy, finally accepting
it. Thesameargumentholdsif H(z,y) = 2, exceptthe machinecanmove into an M5 stateat the
first pointatwhich z differsfrom y, theninto an M3 stateattheotherpointatwhich z differsfrom y.

o If z & Nyo(A), thenVy € A, H(z,y) > 2. Thatis, morethantwo bits in z mustbe flippedto geta
string A. If thisis thecase M’ cannotpossiblyacceptz, sinceit allows at mosttwo deviationsfrom
how the original machineM processes.



2 Nondeterministic Finite Automata (NFA)

Problem 6 - Designing NFAs

Give the statediagramof anNFA with at mostfour stateghatrecognizeshelanguagel;, where

L; = {w : w containseither000 or 010 asa consecutie substring

Strategy: In this problemwe shav how one canusenondeterminisnio save states.We needto make
surethatthereis at leastone acceptingpathfor all the stringswe intendto accept. And that thereis no
acceptingpathfor astringwhichis notin the language Sincewe areinterestedn the presencef a 000 or
010 asasubstringwe canbasicallyignorea preambleof 0’s and1’s thatdoesnot containsequencegie are
interestedn. Thisis shavn by the selfloop in thefirst state.We needa stateto maintaininformationthat
we have just seenatleastone(. Anotheris neededo recordthatwe have just seenatleastoneoccurence
of a00 or a01. In somesensét waspossiblehereto we collapseinto onethetwo separatestatesusedin
the correspondindFA to recordthis information. Finally we needan acceptingstatethatrecordsthatwe
have foundatleastoneoccurencef a 000 or a010.

Construction: Thefollowing NFA acceptd.;.

Figure3: An NFA recognizingL,

Correctness of Construction: We caninformally prove the correctnessf our constructiorby observing
that sandwichedetweerthe startandfinal stateshatallow any combinationsf 0's and1’s is a paththat
canbetraversedon processingeithera 000 or a010. Hencethereis clearly at leastone pathfrom the start
to thefinal stateif theinputstringcontainghedesiredsubstringsTo shawv thatno stringotherthantheones
thathave thedesiredpropertyareacceptedye aguethatthe only way to getfrom the startstateto thefinal
stateis a paththatcanbetraversedf only 000 or 010 appeafasa substring.



Problem 7 - Converting an NFA to an equivalent DFA
Probleml.12b,page85 of thetext.

Referto Theoreml.19,page55 of text, andExamplel.21,page57 of text.

Figure4: A DFA thatis equivalentto the given NFA

Figure5: The DFA abore afterremoring unnecessargtates
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3 Regular Expressions (RE)
Problem 8 - Designing Regular Expressions

Give theregularexpressiorrepresentinghelanguagel; in Probleml.

It is easyto seewhat the expectedRE is by looking at the NFA we designedearlier The regular
expressioris (0 U 1)*(000 U 010)(0 U 1)*.

Problem 9 - Designing Regular Expressions
Give theregularexpressiorrepresentinghelanguagel, in Problem2.

We first characterizeéhe stringsthatarein Ly. Thesestringshave onemorel thansomemultiple of 3.
Thatis all stringswith justone1l, with four 1s,..., andsoon, arein L.

Theregularexpressioris 0*1(0*10*10*1)*0*.

Note: Therearesereralpossiblecorrectsolutionsto suchproblems.For exampleanotheipossiblesolution
would be 0*10* U (0*10*1)(0 U € U 10¥10*1)*(10*10*).
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Problem 10 - Converting NFAsto REs
Probleml.16a,page86 of thetext.

Referto Lemmal.29,page66 of text, andExamplel.30,page68 of text.

" a
b b
a
O—
(A) (B)
(ba*b)Ua
OanO= (&
(b a* b) U @)* b a*
b a*

© (D)

Figure6: Thestepsn convertingthe NFA givenin (A) to a RE (transitionlabel of (D))
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Problem 11 - Converting REsto NFAs
Probleml.14c,page86 of thetext.

Referto Lemmal.32,page69 of text, andExamplel.35,page74 of text.

0,1
(OJHK

Figure7: Building anNFA from the RE ®*
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4 Non-regular Languages

Problem 12 - Application of Pumping Lemma

Probleml.16a,page86 of thetext. Prove thatthe following languages notregular:

L3 = {w: w € {0,1} is notapalindromé

Proof: Considerthecomplementf thelanguagels.

Ly = {w: w € {0,1} isapalindromég

We will prove thatthelanguagel; is notregular We canthenusethefactthatregularlanguagesireclosed
undercomplementatiomo arguethat L3 cannotberegulareither

Let A = L3 andassumeowardsa contradictiorthat A is regular We will usethe pumpinglemmato derive
acontradiction.

Referto Theorem1.37, page78 of thetext. Let p bethe“critical length” given by thetheorem.Let us
choosethe string s = 0P1P1P0P. This string is, by definition of the language containedin the language.
Now sinces € A andclearly |s| > p, the theoremsaysthatit may be written ass = zyz suchthatthe
threeconditionsof the theoremhold. Condition3 saysthat|zy| < p. Sinces = 0P1P1P0P = zyz, it
mustbe thatzy = 0¥ andz = 0P~*1P1P0? for somek < p. Sayr = 0¥~™ andy = 0™. Condition
1 of the theoremholdsfor ary i > 0. We choosei = 2. Now considerthe string s’ = zy?z. Thisis
s = 0k—mp2my = ok+mr—k1P1P0P, andconditionl saysit isin A. But condition2 of thetheorentellsus
ly| > 0, meaningm > 0. Butthenit is clearthats’ is in factnotin A (i.e. s’ is notapalindrome) because
p +m > pands’ will have moreleading0’s thantrailing 0’s. Thisis a contradiction.Henceit mustbethat
L3 is notregulat

Now considerthe languageLs. Assumetowardsa contradictionthat Ls is regulat Sinceregular lan-
guagesare closedundercomplementationthis would meanthat L is alsoregular In view of the result
establishedarlier this againis a contradiction.Henceit mustbethat L3 is notregular

Note: Thereareseveralwaysof usingthe pumpinglemmain proving theabove. Thetrick is in choosing
aninitial strings = zyz which makesourjob easier
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Problem 13
Problem1.28,page89 of thetext.

Proof: In orderto shawv thatlanguageF is notregular, we're goingto assume¥ is regularandthenusethe
pumpinglemmato shav acontradiction.To do so,wefirst have to pick somestrings € E whosdengthis at
leastp, the pumpinglength. This string shouldnot betrivial, hovever. For example,if we pick s = [0/0]?,

wewon't find ary contradictionsincethe pumpinglemmais goingto work. So, let s be[0/1]”[1/0]P. Since
s € E and|s| > p, s canbebrokeninto threeparts,s = zyz, satisfyingthefollowing conditions:

1. for eachi > 0, zy'z € E;
2. |y| > 0; and
3. |zy| < p.

Becausezy| < p and|y| > 0,y = [0/1)7 for some0 < j < p. Then,whenwe pumpup once(i = 2),
we have zy2z = [0/1]P*7[1/0]P whichis clearlynotin E. Thereforewe have acontradictiorandourinitial
assumptionthat E wasregularwaswrong.
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6 Miscellaneous Problems

Problem 14 - All paths NFA
Probleml.31,page89 of thetext.
We first characterizewvhat it meansfor an all-paths-NR to acceptandreject. If the inputis in the

languagewe requirethat all pathsthat may be followed endin acceptingstates.On the otherhand,if the
inputis notin thelanguagewe requirethatthereexist at leastonepaththatleadsto a rejectingstate.

Thereare two directionsto this proof. We startwith the easierone of proving thatif L is a regular
languagehenthereexistsanall-paths-NR thatacceptst.

Given: L isregular SothereisaDFA M thatacceptd..
Want: To construcianall-paths-NR M’ thatacceptd..
Construction: WeclaimthatM’ = M.

Correctness of Construction: Herewe malke the obseration thatthe DFA conformsto the defintion of
theall-paths-NR. Thatis whentheinputis in L, thereis only onepossiblepaththatacceptsn a DFA for
L, andhencewe cansaythatall possiblepathsareaccepting. And whentheinputis notin L, thereis only
onepossiblepaththatrejects,andhencewe cansaythatthereexistsatleastonepaththatrejects.

Now for the otherdirection,
Given: L isalanguageacceptedy someall-paths-NRA.
Want: Toshaw thatL is regular

Proof idea: We will constructanNFA thatacceptsL. This would meanthat L is regular We know that
the classof regularlanguagess closedundercomplementationThuswe will have provedthat L is regular

Construction: Constructhe machineM’ which is the sameas M exceptthatthe rolesof acceptingand
rejectingstateshave beenreversedin M'. Thatis all acceptingstatesn M arerejectingstatesn M’ and
vice-versa.We claimthat M’ is anNFA thatacceptshelanguagel.

Correctness of construction: Considersomez € L. We want M’ to acceptz. We have z ¢ L. This

meanghatoninput z thereis somepathin M which endsin arejectstate. This in turnimpliesthatthere
existssomepathin M’ for inputz which endsin anacceptstateandhenceM’ acceptse.

Now let uslook atsomez ¢ L. Wewant M’ to rejectz. Againwe have z € L. This meanghatoninputz

all pathsin M endin acceptstates.This impliesthaton input z all pathsin M’ would endin rejectstates
andthus M’ rejectsz.
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