
Theory of Computation - CSE 105

Context-free Languages
Sample Problems and Solutions

Designing CFLs

Problem 1 Give a context-free grammar that generates the following language over{0, 1}∗:

L = {w|w contains more 1s than 0s}

Idea: this is similar to the language where the number of 0s isequal to the number of 1s, except we must
ensure that we generate at least one 1, and we must allow an arbitrary number of 1s to be generated anywhere
in the derivation. The following grammar accomplishes thistask:

S → S11S1

S1 → 0S11|1S10|S1S1|1S1|ǫ

Proof of correctness: it should be clear that this grammar cannot generate any strings not inL. The
production forS guarrantees that any string contains at least one 1, and any time a 0 is generated, at least
one additional 1 is generated with it. We must argue that the grammar generates all strings with more 1s
than 0s. The productions forS1 generate all strings containing a number of 1s greater than or equal to the
number of 0s (proven below). The production forS asserts that any stringz in L can be writtenz = x1y
whereN1(x) ≥ N0(x) andN1(y) ≥ N0(y). This is true: ifz begins with a 1, we can say thatz = ǫ1y. If
z begins with a 0, we can use a counter which is incremented by 1 for each 0 encountered and decremented
by 1 for each 1 encountered, and at some point in the string this counter must become -1 upon encountering
a 1 sincez contains more 1s than 0s. Let the part ofz prior to this point bex and the part ofz after this
point bey; clearly, this breakdown ofz = x1y satisfies the requirements stated above.

Now, to show thatS1 generates all stringsz such thatN1(z) ≥ N0(z), the same “counter” argument will
work. If z begins with a 0, it must be of the formz = 0x1y whereN1(x) = N0(x) andN1(y) ≥ N0(y).
If, on the other hand,z begins with a 1, it must either be the case thatz = 1x0y whereN1(x) = N0(x) and
N1(y) ≥ N0(y), or it is the case thatz = 1x whereN1(x) ≥ N0(x). Both of these cases are handled by the
S1 transitions.

Problem 2 Give a context-free grammar generating the language

L = the complement of the language{anbn|n ≥ 0}.

Idea: we can break this language into the union of several simpler languages:L = {aibj |i > j} ∪
{aibj|i < j} ∪ (a ∪ b)∗b(a∪ b)∗a(a∪ b)∗. That is, all strings of a’s followed by b’s in which the number of
a’s and b’s differ, unioned with all stringsnot of the formaibj.

First, we can achieve the union of the CFGs for the three languages:

S → S1|S2|S3

Now, the set of strings{aibj|i > j} is generated by a simple CFG:

S1 → aS1b|aS1|a
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Similarly for {aibj|i < j}:
S2 → aS2b|S2b|b

Finally, (a ∪ b)∗b(a ∪ b)∗a(a ∪ b)∗ is easily generated as follows:

S3 → XbXaX

X → aX|bX|ǫ

Problem 3) Give a CFG to generate

A = {aibjck|i, j, k ≥ 0 and eitheri = j or j = k}.

Is the grammar ambiguous? Why or why not?
Idea: this language is simply the union ofA1 = {aibjck|i, j, k ≥ 0, i = j} andA2 = {aibjck|i, j, k ≥

0, j = k}. We can create simple grammars for the separate languages and union them:

S → S1|S2

ForA1, we simply ensure that the number of a’s equals the number of b’s:

S1 → S1c|A|ǫ

A → aAb|ǫ

Similarly for ensuring that the number of b’s equals the number of c’s:

S2 → aS2|B|ǫ

B → bBc|ǫ

This grammar is ambiguous. Forx = anbncn, we may use eitherS1 or S2 to generatex.

Problem 4 Give a simple description of the language generated by the following grammar in English, then
use that description to give a CFG for the complement of that language.

S → aSb|bY |Y a

Y → bY |aY |ǫ

Clearly,Y generates(a ∪ b)∗. S, then, generates strings likean(a ∪ b)∗abn andanb(a ∪ b)∗bn. Thus we
can get strings likeaibj wherei > j, and we can also get strings likeaibj wherei < j, but cannot getaibj

wherei 6= j. Furthermore, we can generate any string beginning with ab or ending with ana, and every
string beginning witha and ending withb that isnot of the formaibj . This, then, is exactly the complement
of the language{anbn|n ≥ 0}.

A grammar for the complement of this language (which is, of course, just{anbn|n ≥ 0}) is simply

S → aSb|ǫ.
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Chomsky Normal Form (CNF)

Problem 5 Convert the following CFG into Chomsky normal form.

A → BAB|B|ǫ

B → 00|ǫ

1. First add a new start symbolS0 and the ruleS0 → A:

S0 → A

A → BAB|B|ǫ

B → 00|ǫ

2. Next eliminate theǫ-ruleB → ǫ, resulting in new rules corresponding toA → BAB:

S0 → A

A → BAB|BA|AB|A|B|ǫ

B → 00

3. Now eliminate the redundant ruleA → A and theǫ-ruleA → ǫ:

S0 → A|ǫ

A → BAB|BA|AB|BB|B

B → 00

4. Now remove the unit ruleA → B:

S0 → A|ǫ

A → BAB|BA|AB|BB|00

B → 00

5. Then remove the unit ruleS0 → A:

S0 → BAB|BA|AB|BB|00|ǫ

A → BAB|BA|AB|BB|00

B → 00

6. Finally convert the 00 andBAB rules:

S0 → BA1|BA|AB|BB|N0N0|ǫ

A → BA1|BA|AB|BB|N0N0

A1 → AB

B → N0N0

N0 → 0

This grammar satisfies all the requirements for Chomsky Normal Form.
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Designing PDAs

Problem 6 Give an informal description and state diagram for the languageL = {w|w = wR, that is,w is a palindrome
This is fairly simple: we can push the first half ofw, nondeterministically guess where its middle is, and

start popping the stack for the second half ofw, making sure the second half matches what we pop off the
stack. We have to worry about the case where|w| is odd or even, though.

Here is the state diagram:

0, ε 0

1, 1ε

ε ε ε
0, ε ε
1, ε ε

,

0,

1,

ε, ε $

0 ε

1 ε

ε, $ ε

q2

q0

q1

q3

From the start stateq0, we push a $ onto the stack to mark its bottom. In stateq1, we push the first half of
w onto the stack, not including the middle symbol if|w| is odd. Then we nondeterministically guess where
the middle occurs, at which point we can either move to stateq2 without consuming any input if the length
of w is even, or simply ignore the middle symbol if|w| is odd. In stateq2, we pop each stack symbol from
the stack, ensuring that it matches the current input symbol. Finally, if all goes well, we will reach the end
of w with an empty stack (top symbol = $) and accept. Otherwise thePDA will always crash.

Problem 7 Give an informal English description of a PDA for the langauge L = the complement of the
language{anbn|n ≥ 0}.

A PDA for this language can be motivated by the CFG for it. Hereis the CFG:

S → aSb|bY |Y a

Y → bY |aY |ǫ

Recall that this CFG generates strings of the formanb(a ∪ b)∗bn pr an(a ∪ b)∗abn. All we have to do to
accept strings of this form is to push the firstn a’s onto the stack in stateq1, and nondeterministically switch
to a new stateq2 when that is done. At this point we have two branches:

1. If the next symbol is a b, we “flush” that input, go to stateq3, then continue flushing the part of the
string corresponding to(a ∪ b)∗. We nondeterministically guess when this is done and move tostate
q4, which popsn b’s corresponding to the number of a’s that were pushed at thebeginning of the
string, finally switching to an accept stateq5 if the correct number of b’s were matched.

2. If the next symbol wasnot a b, on the other hand, we allow the machine to switch fromq2 to q6,
nondeterministically “flush” the(a ∪ b)∗ part of the string (in this case our input string must be of the
form an(a∪ b)∗abn) then consume the a on the way to stateq4 which as before popsn b’s and accepts
if everything matches correctly.
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Problem 8 Convert the CFGG4 given below to an equivalent PDA.
The CFGG4 is:

E → E + T |T

T → T × F |F

F → (E)|a

Assuming that a shorthand notation allows us to write an entire string to the stack in one PDA step, this task
simply reduces to forming transition rules that implement the productions in the grammar.

Here is the PDA:

q
loop

q
start

ε E+TE
ε
ε

+, +
), )

εa, a

ε(, (
εx, x

q
accept

ε, ε E $

ε, $ ε

,
ε, E T
ε, T TxF
ε, T F
,ε F (E)

ε, F a

The transitions for the rules of the grammar allow us to nondeterministically replace grammar non-
terminals on the stack with their corresponding right-hand-sides; the transitions for the terminals of the
grammar (+,×, ), (, a) allow matching of input symbols to grammar terminals. There will be an accepting
path through the PDA on stringw if and only ifw can be generated by the grammarG4.

Problem 9 Construct a PDA for the language of all non-palindromes over{a, b}.
We can use the PDA for recognizing palindromes to create a PDAfor this language. To change the PDA

accepting all palindromes into one that accepts all non-palidromes, we simply insist in the new machine that
there isat least one inconsistency between the first and second half of input stringw. So the new PDA can
essentially be the same, except when we are popping symbols off the stack and matching them with inputs,
we must make sure that there is at least one a where there should have been a b or vice versa.

Here is the PDA:
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1, 01, 01, 0

ε
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1, 0
0, 1

ε
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0, 1
1, 0
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q3
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ε
ε
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We first mark the bottom of the stack with a $, push the first halfof the string (excepting the middle
symbol if the string has odd length) onto the stack inq1, guess nondeterministically where the middle of the
string is and switch to stateq2. If wR 6= w, then at some point there will be a mismatch between what is on
the stack and in the input; when this is true, the machine can take the transition fromq2 to q3. Otherwise,
any match or mismatch of inputs symbols to symbols on the stack is allowed. Finally, the machine accepts
when 1) the input is exhausted and 2) the stack is empty.

Problem 10 Show thatL = {anbm|m = n2} is not context-free.
Using the pumping lemma, assume the contrary, and lets = uvxyz = apbp

2

. The lemma says
uvixyiz ∈ L for anyi ≥ 0. Clearly, if eitherv or y straddles the boundary between a’s and b’s, pumpings
will generate strings not inL. If v andy are composed entirely of a’s, thenuv2xy2z = ap+jbp

2

, 0 < j ≤ p,
which is not inL since the number of b’s is no longer the square of the number ofa’s. The same argu-
ment holds ifvy = bk. The only remaining case is whenv is one or more a’s andy is one or more b’s.
If this is the case, then we haveuv2xy2z = ap+jbp

2+k, wherej, k > 0. But p2 + k < (p + 1)2 since
(p+1)2 = p2+2p+1 andk < p (becauek+ j ≤ p). Sincep2+k cannot beany perfect square, it certainly
cannot be(p+ j)2 for anyj > 0. Since every case results in a contradiction,L is not context-free.

Problem 11 Decide whetherL = {x ∈ {a, b}∗|Na(x) < Nb(x) < 2Na(x)} is a CFL and prove your
answer.

L is not context free. We can prove this with the pumping lemma.Let s = ap+1b2p+1. Clearly this string
is in L. If vxy = aj , j > 0, thenuxz = ap+1−kb2p+1, j ≤ k > 0, which is not inL because the number
of b’s is more than twice the number of a’s. Ifvxy = bj, j > 0, thenuv2xy2z = ap+1b2p+1+k, k > 0.
This string cannot be inL because there are at least twice as many b’s as a’s. If, on the other hand,vxy
contains both a’s and b’s, then the situation is a little morecomplicated. IfNa(vy) > Nb(vy) then we can
pump down to getuxz, for whichNa(uxz) = p + 1 − j andNb(uxz) = 2p + 1 − k with j < k. But
2(p + 1− j) = 2p + 1 + 1− 2j < 2p + 1− k, since1− 2j < −k wheneverj < k, souxz is not inL. If
Na(vx) ≤ Nb(vx), on the other hand, we can pump up to get a number of b’s more than the number of a’s:
if we use the stringuvpxypz, Na(uv

pxypz) = p + 1 + (p − 1)j andNb(uv
pxypz) = 2p + 1 + (p − 1)k

wherek ≥ j. Then2Na(uv
pxypz) = 2p + 2 + 2j(p − 1) < 2p + 1 + (p− 1)k
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Problem 12 Write a context-free grammar for the languageL = {w#x | wR is a substring ofx for
w, x ∈ {0, 1}∗}.

Solution: Strings in this language share the property that they start with a string w followed by a#,
followed by anything, followed bywR, followed by anything. So we want strings of the formw#(0 ∪
1)∗wR(0 ∪ 1)∗. LetA generate thew#(0 ∪ 1) ∗ wR part, and letB generate the final(0 ∪ 1)∗ part. Thus
we want derivations that proceed as follows:

S ⇒ AB ⇒∗ wAwR ⇒∗ w#(0 ∪ 1)∗wR(0 ∪ 1)∗.

A grammar accomplishing this is:

S → AB

A → 0A0 | 1A1 | #B

B → 0B | 1B | ǫ

Since the recursion with nonterminalA ends only when the transitionA → #B, A must generate a
string whose beginning and end are mirror images. SinceB generates(0∪1)∗, the nonterminalA generates
all strings of the formw#(0 ∪ 1)∗wR. Note that this also covers the case wherew = ǫ. SinceA is
followed byB in the transition for the top-level nonterminalS, the grammar generates all strings of the
form w#(0 ∪ 1)∗wR(0 ∪ 1)∗.

Problem 13 Show thatD = {xy|x, y ∈ {0, 1}∗, |x| = |y|, x 6= y} is a context free language.
Solution: any stringz ∈ D must be even length, and its two halves must differ in at leastone bit. This

meansz can be writtenz = t0yv1w or z = t1yv0w where|t| = |v| and|y| = |w|. But this is the same as
sayingz = t0vy1w or z = t1vy0w where|t| = |v| and|y| = |w|. Formulated this way, we can easily write
a grammar for the language:

S → S0S1|S1S0

S0 → XS0X|0

S1 → XS1X|1

X → 0|1

Problem 14 LetC be a context-free language andR be a regular language. Prove that the languageC∩R
is context-free. Then use the above to show that the languagegiven below is not a CFL.

A = {w | w ∈ {a, b, c}∗and contains equal numbers ofa’s, b’s andc’s}

Solution: We have a CFLC and a regular languageR and we want to show thatC ∩R is context-free.
SinceC is given to be a CFL we know that there exists a PDA, sayM1, to recognizeC. SinceR is given
to be regular we have a DFA, sayM2, to recognizeR. To prove thatC ∩ R is a CFL we demonstrate a
pushdown automaton, call itM , that recognizesC ∩R.

The proof is by construction. We constructM fromM1 andM2. The construction is similar to the proof
of showing that the class of regular languages are closed under the union (or intersection) operation on pg.
45 of the text.

LetM1 recognizeC, whereM1 = (Q1,Σ,Γ1, δ1, q1, F1).
LetM2 recognizeR, whereM2 = (Q2,Σ, δ2, q2, F2).
ConstructM to recognizeC ∩R, whereM = (Q,Σ,Γ, δ, q, F ).
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1. Q = {(r1, r2)|r1 ∈ Q1 andr2 ∈ Q2}

2. Σ is assumed the same inM1 andM2.

3. Γ = Γ1

4. δ is defined as follows: for each(r1, r2) ∈ Q; eacha ∈ Σ and eachb ∈ Γ let

δ((r1, r2), a, b) = (δ1(r1, a, b), δ2(r2, a))

5. q = (q1, q2)

6. F = {(r1, r2)|r1 ∈ F1 andr2 ∈ F2}

Note that the above construction works only because one of the machines being simulated (the DFAM2

above) does not need a stack. Observe that we may need to maintain 2 stacks if we attempted to simulate2
PDA’s instead, and that a PDA cannot do that.

Now to show that the given languageA is not a CFL, we will make the assumption that it is and then
derive a contradiction. Under this assumption we are guaranteed (from the part above) that if we intersected
some regular language withA, then the resulting language would be a CFL. So if we show thatfor some
regular languageR and some languageB which is not a CFL that,A ∩ R = B, then we have derived the
contradiction. To see what thisR andB might be consider all these languages,A, B andR as capturing
“some property”. From the definition ofA we see that this property is “equality” ofa’s, b’s andc’s. For
B lets try the canonical example of the language that is not a CFL, viz. B = {anbncn|n ≥ 0}. B has the
property of “equality” as well as “order” of (zero or more)a’s followed by (zero or more)b’s followed by
(zero or more)c’s. Now it is easy to see what we want ofR; thatR should have the property of “order”.
This isR = a∗b∗c∗ (and we know that this is regular).

Since we have a contradiction, it must be thatA is not a CFL.

Problem 15 LetL4 = {w#x | w is a substring ofx}. Show thatL4 is not a context-free language (CFL).
Solution: In order to show thatL4 is not a CFL, we will proceed by contradiction. AssumeL4 is a CFL.

Let p be the pumping length given by the pumping lemma and lets = apbp#apbp. Becauses is a member of
L4 and|s| > p, the pumping lemma says thats can be split intouvxyz satisfying the following conditions:

1. for eachi ≥ 0, uvixyiz ∈ L4,

2. |vy| > 0, and

3. |vxy| ≤ p.

For convenience, we also writes asL#R, whereL andR stand for the strings to the left and to the right of
#, respectively.

First of all, we can note thatvy cannot contain#, sinceuv2xy2z would contain more than one# and
would not be inL4. Then, we can think of three possible cases for the stringvy:

• vy contains more symbols fromL than fromR.
In this case,uv2xy2z = L′#R′ where|L′| > |R′|. Therefore,L′ cannot be a substring ofR′ and the
entire string is not inL4.
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• vy contains more symbols fromR than fromL.
In this case (pumping down),uv0xy0z = L′#R′ where |L′| > |R′|. Therefore,L′ cannot be a
substring ofR′ and the entire string is not inL4.

• vy contains an equal number of symbols from bothL andR.
In this case, because of conditions 2 and 3 of the pumping lemma, v = bj andw = aj for somej
such that1 ≤ j ≤ p/2. Thereforeuv2xy2z = apbp+j#ap+jbp is not in the language.

Because every possible way of splitting the input intouvxyz yields a contradiction, the initial assump-
tion thatL4 is a CFL is false and the proof is complete.
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