Theory of Computation - CSE 105

Context-free Languages
Sample Problems and Solutions

Designing CFLs
Problem 1 Give a context-free grammar that generates the followingdage ovef0,1}*:
L = {w|w contains more 1s than Ps

Idea: this is similar to the language where the number of @sgjisl to the number of 1s, except we must
ensure that we generate at least one 1, and we must allowiaarbumber of 1s to be generated anywhere
in the derivation. The following grammar accomplishes tagk:

S — 51151
51 — 0511|1510|5151|151|6

Proof of correctness: it should be clear that this grammanatigenerate any strings notin The
production forS guarrantees that any string contains at least one 1, andraayatO is generated, at least
one additional 1 is generated with it. We must argue that thenghar generates all strings with more 1s
than 0s. The productions f¢#; generate all strings containing a number of 1s greater thagual to the
number of Os (proven below). The production foasserts that any stringin L can be writterz: = z1y
whereN; (z) > Ny(z) andNi(y) > No(y). This is true: ifz begins with a 1, we can say that= cly. If
z begins with a 0, we can use a counter which is incremented by daich 0 encountered and decremented
by 1 for each 1 encountered, and at some point in the strisgcthinter must become -1 upon encountering
a 1 sincez contains more 1s than 0s. Let the partzgbrior to this point ber and the part ot after this
point bey; clearly, this breakdown of = x1y satisfies the requirements stated above.

Now, to show thafS; generates all stringssuch thatV; (z) > Ny(z), the same “counter” argument will
work. If z begins with a 0, it must be of the form= 0z1y whereN;(z) = No(z) andN1(y) > No(y).

If, on the other hand; begins with a 1, it must either be the case that 120y whereN;(z) = Ny(z) and
Ni(y) > No(y), or itis the case that = 1 whereN; (z) > Ny(x). Both of these cases are handled by the
S transitions.

Problem 2 Give a context-free grammar generating the language
L = the complement of the language™v"|n > 0}.

Idea: we can break this language into the union of severgblsilanguages:Z = {a'b’|i > j} U
{a'b’]i < j} U (aUb)*b(aUb)*a(aUb)*. Thatis, all strings of a’s followed by b’s in which the nunnloé
a’s and b’s differ, unioned with all string®t of the forma‘t’.

First, we can achieve the union of the CFGs for the three laggst

S — 51|52]53
Now, the set of string$a’t’|i > j} is generated by a simple CFG:

S1 — aS1blaSi|a



Similarly for {a’b’|i < j}:
52 — a52b|52b|b

Finally, (a U b)*b(a U b)*a(a U b)* is easily generated as follows:

S3 — XbXaX

X — aX|bX|e
Problem 3) Give a CFG to generate

A = {a't’*|i, j, k > 0 and eitheri = j or j = k}.
Is the grammar ambiguous? Why or why not?
Idea: this language is simply the union.&f = {a’t/c*|i, j, k > 0,i = j} and Ay = {a’b/cF|i, j, k >
0,7 = k}. We can create simple grammars for the separate languadesi@m them:
S — 51|SQ

For A, we simply ensure that the number of a's equals the numbes:of b

S1 — SicAle
A — aAble

Similarly for ensuring that the number of b’s equals the nandf c's:

Sy — aSq|Ble
B — bBcle

This grammar is ambiguous. Fer= a™b"c", we may use eithe$; or Sy to generater.

Problem 4 Give a simple description of the language generated by tlwvimg grammar in English, then
use that description to give a CFG for the complement of #raguage.

S — aSblbY|Ya
Y — bY|aYle

Clearly, Y generatesa U b)*. S, then, generates strings lik& (a U b)*ab™ anda"b(a U b)*b". Thus we
can get strings like’b’ wherei > j, and we can also get strings likéh’ wherei < j, but cannot get't’
wherei # j. Furthermore, we can generate any string beginning witloaending with arz, and every
string beginning withu and ending with that isnot of the forma’s?. This, then, is exactly the complement
of the languagda”b™|n > 0}.

A grammar for the complement of this language (which is, afrse, just{a™b™|n > 0}) is simply

S — aSble.



Chomsky Normal Form (CNF)

Problem 5 Convert the following CFG into Chomsky normal form.

A — BAB|Ble
B — 00]e

First add a new start symbg} and the ruleS, — A:
S() — A
A — BAB|Ble
B — 00|¢

. Next eliminate the-rule B — ¢, resulting in new rules corresponding fo— BAB:

SO — A
A — BAB|BA|AB|A|Ble
B — 00

Now eliminate the redundant rule — A and thee-rule A — €:

So
A
B

—  Ale
BAB|BA|AB|BB|B

00

%
%

. Now remove the unit ruldl — B:

So
A
B

1

Ale
BAB|BA|AB|BB|00
00

L

. Then remove the unit rulg; — A:

Sy — BAB|BA|AB|BB|00|e
A — BAB|BA|AB|BB|00
B — 00
6. Finally convert the 00 an8 AB rules:
S(] — BA1|BA|AB|BB|NON0|E
A1 — AB
B — N(]N(]
Ng — 0

This grammar satisfies all the requirements for Chomsky MbForm.



Designing PDAs

Problem 6 Give an informal description and state diagram for the laggd = {w|w = w™, thatis,w is a palindron
This is fairly simple: we can push the first halfof nondeterministically guess where its middle is, and
start popping the stack for the second haltgfmaking sure the second half matches what we pop off the
stack. We have to worry about the case whergis odd or even, though.
Here is the state diagram:

ge—$ £$—c¢
ql q2
g, €E—¢
0, e—¢
1, e —=¢
0,e—20 0,0—c¢
1,e—=1 1,1—=c¢

From the start statg,, we push a $ onto the stack to mark its bottom. In sjateve push the first half of
w onto the stack, not including the middle symbol.if| is odd. Then we nondeterministically guess where
the middle occurs, at which point we can either move to stateithout consuming any input if the length
of w is even, or simply ignore the middle symboldf| is odd. In statej,, we pop each stack symbol from
the stack, ensuring that it matches the current input synttohlly, if all goes well, we will reach the end
of w with an empty stack (top symbol = $) and accept. Otherwisé D& will always crash.

Problem 7 Give an informal English description of a PDA for the langaug= the complement of the
language{a"b™|n > 0}.
A PDA for this language can be motivated by the CFG for it. Hetthe CFG:

S — aSblbY|Ya
Y — bY|aYle

Recall that this CFG generates strings of the farth(a U b)*b™ pr a™(a U b)*ab™. All we have to do to
accept strings of this form is to push the firsh's onto the stack in statg, and nondeterministically switch
to a new stat@, when that is done. At this point we have two branches:

1. If the next symbol is a b, we “flush” that input, go to statethen continue flushing the part of the
string corresponding tou U b)*. We nondeterministically guess when this is done and mogtate
q4, Which popsn b’s corresponding to the number of a’s that were pushed abélg@enning of the
string, finally switching to an accept stateif the correct number of b's were matched.

2. If the next symbol wasot a b, on the other hand, we allow the machine to switch fggnto gg,
nondeterministically “flush” théa U b)* part of the string (in this case our input string must be of the
form o™ (aUb)*ab™) then consume the a on the way to statevhich as before pops b’'s and accepts
if everything matches correctly.



Problem 8 Convert the CFG74 given below to an equivalent PDA.
The CFGGYy is:

E — E+T|T
T — TxF|F
F — (E)la

Assuming that a shorthand notation allows us to write anmestring to the stack in one PDA step, this task
simply reduces to forming transition rules that impleméxat productions in the grammar.

Here is the PDA:

ge—=E$

&E —=E+T a,a—¢

EE—=T ++—=¢
Yoo T —TxF ),) —c¢
T —F L( —=c¢

&F —(E) x,x —¢

—_—
£$—=¢ & F a

accept

The transitions for the rules of the grammar allow us to ntemeinistically replace grammar non-
terminals on the stack with their corresponding right-haiats; the transitions for the terminals of the
grammar §, x, ), (, a) allow matching of input symbols to grammar terminals. Eheill be an accepting
path through the PDA on string if and only if w can be generated by the gramniay.

Problem 9 Construct a PDA for the language of all non-palindromes dueb}.

We can use the PDA for recognizing palindromes to create af®bthis language. To change the PDA
accepting all palindromes into one that accepts all noithmhes, we simply insist in the new machine that
there isat least one inconsistency between the first and second half of input stringSo the new PDA can
essentially be the same, except when we are popping symibdie stack and matching them with inputs,
we must make sure that there is at least one a where thereddtené been a b or vice versa.

Here is the PDA:



0,0—¢
1, 1—c¢
1,0 —=c¢
0,1 —=c¢

0,e—=0 0,0—=c¢
l,e—=1 1, 1—=¢
1L,O—¢
0,1 —=c¢

We first mark the bottom of the stack with a $, push the first bathe string (excepting the middle
symbol if the string has odd length) onto the stackiinguess nondeterministically where the middle of the
string is and switch to statg. If w™ # w, then at some point there will be a mismatch between what is on
the stack and in the input; when this is true, the machine &k the transition from, to g3. Otherwise,
any match or mismatch of inputs symbols to symbols on thé&staallowed. Finally, the machine accepts
when 1) the input is exhausted and 2) the stack is empty.

Problem 10 Show thatl = {a"b™|m = n?} is not context-free.

Using the pumping lemma, assume the contrary, and let wvryz = aPb?’. The lemma says
wvizy'z € L for anyi > 0. Clearly, if eitherv or y straddles the boundary between a’s and b’s, pumping
will generate strings not L. If v andy are composed entirely of a's, then?zy2z = a?™bP* 0 < j < p,
which is not inL since the number of b’s is no longer the square of the numbaisofThe same argu-
ment holds ifvy = b*. The only remaining case is whenis one or more a’s angl is one or more b’s.
If this is the case, then we have?zy?z = a?™bpP°tF, wherej, k > 0. Butp? + k < (p + 1)? since
(p+1)%2 = p>+2p+1andk < p (becaue:+j < p). Sincep? + k cannot beany perfect square, it certainly
cannot bep + j)? for anyj > 0. Since every case results in a contradictibris not context-free.

Problem 11  Decide whethel, = {z € {a,b}*|N,(z) < Ny(z) < 2N,(z)} is a CFL and prove your
answer.

L is not context free. We can prove this with the pumping lembeds = aP+10?P*+1. Clearly this string
isin L. If vey = a?,j > 0, thenuzz = a1 =Fp2P*1 j < k > 0, which is not inL because the number
of b’s is more than twice the number of a’s. diy = ¥/, > 0, thenuv?zy?z = aPT1H?PH1+E | > 0,
This string cannot be i, because there are at least twice as many b’s as a’s. If, onthiee lvandpzy
contains both a’'s and b’s, then the situation is a little mumeplicated. IfN,(vy) > N(vy) then we can
pump down to getizz, for which N, (uxz) = p+ 1 — j and Ny(uzz) = 2p + 1 — k with j < k. But
2p+1—j)=2p+1+1—-2j <2p+1—k,sincel — 25 < —k wheneverj < k, souxzisnotinL. If
Ny (vx) < Ny(vz), on the other hand, we can pump up to get a number of b’s monettieanumber of a’s:
if we use the stringuwPay?z, N, (uvPzyPz) = p+ 1+ (p — 1)j and Ny(woPzyPz) =2p+ 1+ (p — 1)k
wherek > j. Then2N,(uwvPzyPz) =2p+2+2j(p—1) <2p+ 1+ (p— 1)k



Problem 12 Write a context-free grammar for the languaie= {w#z | w™ is a substring of: for
w,z € {0,1}*}.

Solution: Strings in this language share the property that they stigint avstring w followed by a#,
followed by anything, followed byw’, followed by anything. So we want strings of the for (0 U
)*wf(0 U 1)*. Let A generate thev#(0 U 1) * w’ part, and letB generate the finglo U 1)* part. Thus
we want derivations that proceed as follows:

S = AB =* wAw® =* w#0O U 1)* w0 U1)*.
A grammar accomplishing this is:

S — AB
A — 0AO0|1Al|#B
B — O0B|1B]|e

Since the recursion with nontermindl ends only when the transitiod — #B, A must generate a
string whose beginning and end are mirror images. Sihgenerateg0U 1)*, the nonterminald generates
all strings of the formw#(0 U 1)*w!’. Note that this also covers the case where= ¢. Since A is
followed by B in the transition for the top-level nontermin8l the grammar generates all strings of the
form w# (0 U 1)*wf(0 U 1)*.

Problem 13 Show thatD = {zy|z,y € {0,1}*, |x| = |y|, = # y} is a context free language.

Solution: any stringz € D must be even length, and its two halves must differ in at leastbit. This
meansz can be writternz = t0yvlw or z = t1yv0w where|t| = |v| and|y| = |w|. But this is the same as
sayingz = tOvylw or z = tlvyOw where|t| = |v| and|y| = |w|. Formulated this way, we can easily write
a grammar for the language:

SoSl|Sls(]
XSy X|0
XS X|1
of1

N
Ll

Problem 14 Let C be a context-free language aRe a regular language. Prove that the langu@ger
is context-free. Then use the above to show that the langgiage below is not a CFL.

A ={w|w € {a,b,c}*and contains equal numbersa$, b’s andc’s}

Solution: We have a CFLC and a regular language and we want to show that N R is context-free.
SinceC is given to be a CFL we know that there exists a PDA, 8&y to recognizeC'. SinceR is given
to be regular we have a DFA, sdy-, to recognizeR. To prove that”' N R is a CFL we demonstrate a
pushdown automaton, call M/, that recognize§’ N R.

The proof is by construction. We construgt from A, andM,. The construction is similar to the proof
of showing that the class of regular languages are closeéruhd union (or intersection) operation on pg.
45 of the text.

Let M; recognizeC, whereM; = (Q1,%,T'1, 601, q1, F1).

Let M, recognizeR, whereMs = (Q2, X, 02, g2, F5).

ConstructM to recognizeC' N R, whereM = (Q,>,T,0,q, F).



Q = {(r1,r2)|r1 € Q1 andrs € Q2}
Y is assumed the same id; and Ms.

r=r

A w0 b PF

J is defined as follows: for eadr;, r2) € Q; eacha € ¥ and eactb € T' let

0((r1,72),a,b) = (01(r1,a,b), d2(ra, a))

5 q¢=(q1,9)
6. F'={(r1,r2)|r1 € F1 andry € Fp}

Note that the above construction works only because oneeghtichines being simulated (the DB&
above) does not need a stack. Observe that we may need t@maistacks if we attempted to simulae
PDA’s instead, and that a PDA cannot do that.

Now to show that the given languagkis not a CFL, we will make the assumption that it is and then
derive a contradiction. Under this assumption we are gueean(from the part above) that if we intersected
some regular language with, then the resulting language would be a CFL. So if we showftitadome
regular languagé? and some languagB which is not a CFL thatA N R = B, then we have derived the
contradiction. To see what thi® and B might be consider all these languagds,B and R as capturing
“some property”. From the definition od we see that this property is “equality” efs, b’s andc’'s. For
B lets try the canonical example of the language that is notla @&. B = {a"b"c"|n > 0}. B has the
property of “equality” as well as “order” of (zero or more’s followed by (zero or more)’s followed by
(zero or more)k’'s. Now it is easy to see what we want &f that R should have the property of “order”.
This isR = a*b*c* (and we know that this is regular).

Since we have a contradiction, it must be tHat not a CFL.

Problem 15 Let Ly = {w#x | w is a substring of}. Show thatl, is not a context-free language (CFL).
Solution: In order to show thak., is not a CFL, we will proceed by contradiction. Assuieis a CFL.

Let p be the pumping length given by the pumping lemma and teta?b? #aPbP. Because is a member of

L4 and|s| > p, the pumping lemma says thatan be split inta.vzyz satisfying the following conditions:

1. for eachi > 0, w'zy'z € Ly,
2. vyl > 0, and
3. |vzy| < p.

For convenience, we also writeas L# R, whereL and R stand for the strings to the left and to the right of
#, respectively.

First of all, we can note thaty cannot contair, sinceuv?zy?z would contain more than ong and
would not be inL4. Then, we can think of three possible cases for the string

e vy contains more symbols froth than fromR.
In this caseuv?ry?z = L'# R’ where|L'| > |R'|. Therefore,L’ cannot be a substring @t and the
entire string is not inL4.



e vy contains more symbols frorR than fromL.

In this case (pumping down)’zy’z = L'# R’ where|L'| > |R'|. Therefore,L' cannot be a
substring ofR’ and the entire string is not ih,.

e vy contains an equal number of symbols from bétand R.
In this case, because of conditions 2 and 3 of the pumping Emm: v/ andw = o’ for somej
such thatl < j < p/2. Thereforeuv?zy?z = aPbP 7 4£aP7bP is not in the language.

Because every possible way of splitting the input inta:y = yields a contradiction, the initial assump-
tion thatZ, is a CFL is false and the proof is complete.



