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1 Introduction

Programming is difficult, as shown by the fact that debugging a program
usually takes more time than creating it; moreover, the difficulty of debug-
ging increases non-linearly with program size. One reason for such phe-
nomena is the astonishing complexity and subtlety of the semantics of most
widely used programming languages, due mainly to the desire for high ef-
ficiency on conventional processors. But rapid increases in the power and
flexibility of hardware, and in the need for greater reliability and security
in applications, suggest that it may be valuable to consider alternative ap-
proaches, based on higher level languages with much simpler semantics,
despite the undoubted inertia of tradition, and the difficulty of learning
new languages and new paradigms.

This paper focuses on the OBJ family of languages, which have seman-
tics based on various extensions of (first order) equational logic. The OBJ
languages are logical programming languages, in which programs are
theories, and computation is deduction, which makes it possible to do spec-
ification, programming and verification in a unified framework. This paper
is mainly intended to introduce and motivate the material that it covers,
rather than to provide a thorough mathematical exposition. Consequently,
there are many references and several examples, but all proofs and many
technical details are omitted.

Equational logic of course cannot do everything, but when it is appli-
cable, it has some significant advantages resulting from its simplicity, in-
cluding ease of learning and use, and the decidability of problems that are
intractable in more complex logics; moreover, algorithms for these problems
are often quite efficient, e.g., term rewriting, unification, narrowing, and
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Knuth-Bendix completion. Unsorted unconditional equational logic, which
goes back to Whitehead [1998], and later Birkhoff [1935], is not expres-
sive enough for most computer science applications, and has therefore been
extended in many ways. The simplest extensions are to many sorted and
conditional equational logic [Goguen and Meseguer, 1985a], which provide
additional expressive power and support strong type checking. Two fur-
ther extensions, to overloaded operations and subtypes, yield order sorted
equational logic [Goguen and Meseguer, 1985b], which supports partial
operations, exception handling, type conversion, multiple representations,
and more [Meseguer and Goguen, 1993]; the core members of the OBJ family
are all based on this, including OBJ2, OBJ3 [Goguen et al., 2000], CafeOBJ
[Diaconescu and Futatsugi, 1998a], and most recently, BOBJ [Goguen et al.,
2003; Goguen and Lin, 2003] which extends OBJ3 with hidden equational
logic and higher order modules.

Two other ways to extend equational logic are partial algebra [Cerioli
et al., 1998], which is used in CASL [Mosses, 2004}, and membership equa-
tional logic [Meseguer, 1997], which is used in Maude [Clavel et al., 1996;
Clavel et al., 2001]. A more radical extension introduces behavioral abstrac-
tion, which permits specifying systems with states, infinite data structures
(such as streams), non-determinism, and concurrency, and which also al-
lows verifying much more sophisticated properties of systems; our version
of this is called hidden algebra [Goguen, 1989; Goguen and Malcolm, 1997;
Goguen and Rosu, 1999; Rosu, 2000]. Behavioral logic is a diverse research
area, including not just hidden algebra, but also coherent hidden algebra od
Diaconescu [Diaconescu and Futatsugi, 1998b; Diaconescu and Futatsugi,
1998a), the observational logic of Bidoit and Hennicker [1999; 2003], and
coalgebra, e.g., see the survey [Jacobs and Rutten, 1997], and for recent
results, [Fiadeiro et al., 2005]. These approaches fall into two broad cate-
gories, depending on whether or not a fixed data algebra is assumed for all
models. [Goguen et al., 2000a; Rosu and Goguen, 2001]; further details are
given later.

Perhaps the two most important innovations are the module system
which appears in all current OBJ family members, and the C4RW coin-
duction algorithm of BOBJ [Goguen et al., 2000a; Goguen et al., 2000b;
Goguen et al., 2003; Goguen and Lin, 2003]. OBJ3 and BOBJ have higher
order module systems, though BOBJ goes further, and has also extended its
coinduction algorithm to handle mutual coinduction; therefore this paper is
somewhat focused on these two recent contributions, for which it provides
an introduction and motivation in the next two subsections. It is notewor-
thy that together they give a useful platform for specifying and verifying
complex systems, such as communication protocols. Section 2.5 discusses



Specifying, Programming and Verifying with Equational Logic 3

logical programming.

1.1 Modularization

Modularization controls the complexity of large systems by composing them
from parts; this eases both initial construction and later modification by
making large grain structure explicit, and it also considerably facilitates
reuse. Early designs for OBJ [Goguen, 1977] called for a module system
like that of the Clear specification language [Burstall and Goguen, 1977].
This approach was later improved and formalized as parameterized pro-
gramming, which provides parameterized modules and (so called) views
among its “first class citizens,” where the latter say how to fit the syntax of
a formal parameter to an actual parameter, including defaults when there is
only one obvious choice; moreover, views can be parameterized, and mod-
ule expressions compose modules, and in particular, can describe software
architectures. Parameterized programming was first fully implemented in
OBJ3 [Goguen et al., 2000], following partial implementations in earlier
versions of OBJ, and it appears in all current members of the OBJ family,
including CafeOBJ [Diaconescu and Futatsugi, 1998a], Maude [Clavel et al.,
2001], the European languages CASL [Mosses, 2004] and ACTTWO [Ehrig and
Mabhr, 1990], and of course BOBJ. Other languages that have been influ-
enced by parameterized programming include Ada, ML, C++, and Modula,
none of which has views, so that the syntax of an actual parameter module
must contain the syntax of its formal parameter. Ada does not even allow
instantiated parameterized modules to be used as actual parameters. ML
[Milner et al., 1997] comes closest to fully implementing parameterized pro-
gramming, but it lacks views, and in particular, it lacks the convenience of
default views.

The Clear module system [Burstall and Goguen, 1977] has semantics
based on the category of theories, where views are given by theory mor-
phisms and module composition is given by colimit, inspired by an earlier
category theoretic approach to general systems [Goguen, 1971]. This se-
mantics also applies to the OBJ family, and is here extended to higher
order parameterized programming in Section 3.3, and illustrated with an
inductive proof scheme.

It should not be thought that parameterized programming is limited to
functional languages, let alone to algebraic specification languages; it can
be implemented for almost any language, e.g., using techniques suggested
for the LIL [Goguen, 1986] extension of Ada, and implemented in Lileanna
[Tracz, 1993], which involve translating to intermediate compiled code (Di-
anna in the case of Ada) and then applying the compiler’s backend opti-
mization. Similar techniques can be used for the higher order case.
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1.2 Behavioral Specification and Verification

The basic idea of behavioral abstraction is that an equation (or other
axiom) need not actually be satisfied by all interpretations into a model of
its free (or universally quantified) variables, but need only appear to do so
with respect to a given set of “experiments,” which consist of applying a
sequence of state changing operations, and then one state observing opera-
tion. This idea, first suggested by Horst Reichel [1981; 1995], underlies the
hidden algebra approach to behavioral specification and verification that
is implemented in BOBJ and CafeOBJ. The weaker notion of satisfaction
is important because many clever implementations used in practice only
satisfy their specifications in this sense.

A behavioral specification consists of a signature ¥ in which some
operations are declared behavioral (as defined in Section 2.4), a set of equa-
tions, some of which are behavioral, and a subsignature of X, called a coba-
sis, the operations in which can be used in experiments. Then behavioral
verification attempts to determine if a given equation is behaviorally sat-
isfied by all models that behaviorally satisfy the given specification. In con-
trast to the corresponding problem for ordinary satisfaction, there cannot
exist any finite complete set of rules of deduction for behavioral satisfaction
[Buss and Rosu, 2000]. Nevertheless, there is an algorithm that is surpris-
ingly useful in practice, as we will see. Moving from ordinary to behavioral
logics allows much more natural treatment of systems with internal states,
and also supports concurrency and non-determinism, which are essential for
modern network based systems. Moreover, since the BOBJ implementation
builds on order sorted algebra, classes, subclasses (inheritance), overload-
ing, exceptions, and abstract data types, are also supported, making this
approach suitable for non-trivial software engineering applications.

Although simulated computation with behavioral specifications is not fea-
sible, specifying and verifying high level designs seems more useful in prac-
tice, because the bugs that are most difficult to find and correct typically
arise at the design level; in fact, we argue that verification is a proper gener-
alization of programming for the specification level. CafeOBJ [Diaconescu
and Futatsugi, 1998a] and Spike [Berregeb et al., 1998] also implement be-
havioral specification and verification, but circular coinductive rewriting is
only implemented in BOBJ. Behavioral equivalence generalizes the notion
of bisimilarity used in process algebra, for which there is a very large litera-
ture, including proof methods that are special cases of coinduction; we just
mention Milner’s CCS [Milner, 1980] and [Park, 1980], where the notion of
bisimilarity seems to have originated. Hidden algebra generalizes process al-
gebra and transition system to include non-monadic parameterized methods
and attributes, which can sometimes dramatically simplify verification.
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2 Basic OBJ Features

OBJ began around 1974 as a notation for algebraic specification, and soon
after was implemented in the OBJ0 system based on term rewriting; the first
publication on OBJ [Goguen, 1977] included early versions of parameter-
ized programming and order sorted algebra. Subsequent implementations
include OBJT [Goguen and Tardo, 1979], OBJ1 [Goguen and Meseguer,
1982], OBJ2 [Futatsugi et al., 1985], OBJ3 [Goguen et al., 2000], and most
recently, BOBJ [Goguen et al., 2003; Goguen and Lin, 2003}, which is highly
portable since implemented in Java, and is used for the examples in this pa-
per. CafeOBJ [Diaconescu and Futatsugi, 1998a] and Maude [Clavel et al.,
2001] also share many basic design features. Readers already familiar with
OBJ or equational programming may wish to skip Sections 2.1 to 2.3, but
Section 2.4 introduces behavioral semantics, and Section 2.5 contains a new
theory of logical programming.

2.1 Loose Semantics

The simplest semantics for used for OBJ is loose semantics, in which a
theory specifies the variety of all algebras that satisfy its axioms. We begin
with some basic concepts, notation and terminology from. Given a set S,
an S-sorted set A is a family of sets Ay, one for each s € S. The elements
of S are called sorts and the notation {A,|s € S} is used. A signature
Y is an (S* x S)-sorted set {X,, s |(w,s) € S}. The elements of ¥,, ; are
called operation (or function) symbols of arity w, sort s, and type (w, s);
in particular, o € X[} , is a constant symbol ([] denotes the empty string).
If o has the type (w,s), we write o0: w — s, and constants are written
c: — s when c € X ;.

Signatures are given in BOBJ by giving sorts after the keywords sort
or sorts, and operations after the keywords op or ops. The form of an
operation follows the op keyword, then a colon followed by a list of the sorts
for arguments to that operation, followed by an arrow, followed by the value
sort of the operation. Underbar characters serve as place holders within the
form, to indicate where the arguments should go; the number of underbars
and argument sorts should be the same. If there are no underbars but
the argument sort list is non-empty, as with the insert operation below,
the operation is assumed to have syntax that requires opening and closing
parentheses, with commas between arguments, as in insert(2, S).

sorts Elt Set .

op empty : -> Set .

op _in_ : Elt Set -> Bool
op insert : Elt Set -> Set .
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Overloading is possible (and very helpful for readability) in this frame-
work, since the same form can have more than one type. E.g., the form
_in_ could also be an operation on lists, with type (List List, Bool), where
Bool is the sort of Booleans, from the builtin module BOOL, which is im-
ported by default into every other module. ¥ is a ground signature iff
1,s N X[y, = 0 whenever s # s’ and £, ; = § unless w = []. Union
is defined componentwise, by (S U X')y s = Ty,s U E'w’s. A common case
is union with a ground signature X, where we use the notation X(X) for
YUX.

A Y-algebra A consists of an S-sorted set also denoted A, plus an in-
terpretation of ¥ in A, which is a family of arrows is,. .5, ,s: Xs;...50,5 =
[As; X ...x Ag, — Ag] for each type (s1...8p,5) € S* xS, which interpret the
operation symbols in ¥ as actual operations on A. For constant symbols,
the interpretation is given by i[} ,: ¥j; = A,. Usually we write just o for
iw,s(0), but if we need to make the dependence on A explicit, we may write
o4. Ag is called the carrier of A of sort s. Given X-algebras A and B, a
3-homomorphism h: A — B is an S-sorted arrow h: A — B such that
hs(ca(mi,...,my) = oB(hs;(m1), ..., hs, (my)) for each ¢ € X4, 5, s and
all m; € Ay, for i = 1,...,n, and such that hy(ca) = cp for each constant
symbol ¢ € Xy ,.

A ¥-congruence relation ~ on a X-algebra A is a S-indexed equivalence
relation such that if o: s1...s, — s and a;,b; € A, with a; ~ b; for
1 <i < n, then o(ay,...,an) ~ o(by,...,b,). Given a X-congruence relation
~ on A, the quotient Y-algebra A/~ is a ¥-algebra A/~ such that (A/~),
is A;/~s for any sort s and o([ay], ..., [as]) = [0(a1, ..., a,)] for any a; € As,
and1<i<nando: s;..5, &> s € X.

Given an S-sorted signature X, the S-sorted set Ty of X-terms is the
smallest S-sorted set such that ¥; , C Tx s and given o € ¥, 5, s and t; €
Tx.s; then o(t1...tp) € T, 5. Notice that Ty is a Y-algebra by interpreting
o € E[],s as just o, and o € X, 4, s as the operation sending t¢i,...,%,
to the list o(t;...t,). Thus, Ty is called the X-term algebra . Note that
because of overloading, terms do not always have a unique parse. Below is
the key property of this algebra; proofs are generally omitted, but can be
found in the literature.

THEOREM 1. Given a signature ¥ with no overloaded constants and a
Y-algebra A, there is a unique X-homomorphism Ts, — A. O

Given a signature ¥ and a ground signature X disjoint from ¥, we can
form the ¥(X)-algebra Tx(x) and then view it as a X-algebra by forgetting
the names of the new constants in X; let us denote this Y-algebra by Tx(x).
It has the following universal freeness property:



Specifying, Programming and Verifying with Equational Logic 7

THEOREM 2. Given a X-algebra A and a: X — A, there is a unique X-
homomorphism a: Ty(x) — A extending a, in the sense that @s(x) = as(x)
for each z € X, and s € S; sometimes we will write just a instead of a.

A Y-equation consists of a ground signature X of variable symbols (dis-
joint from X)) plus two X(X)-terms of the same sort s € S; we may write
such an equation abstractly in the form (VX) ¢ = t' and concretely in the
form (Vz,y,z) t = t' when |X| = {z,y,2} and the sorts of z,y,z can be
inferred from their uses in ¢ and in ¢'. Similarly, a ¥-conditional equation
consists of a ground signature X of variable symbols plus a set of pairs
of ¥(X)-terms u;,u; and ¢,t', each pair of the same sort and 1 < ¢ < n,
written in the form (VX) t =¢' if u; = ui,...,u, = u,,. Hereafter we use
the word “equation” for both the conditional and unconditional cases. A
specification or theory P is a pair (X, E), consisting of a signature ¥ and
a set E of Y-equations.

If a ¥-equation e is (VX) t = ' if u3 = u{,..,up, = u,, and A is a
Y-algebra, we say A satisfies this equation, written A |=yx e, iff for any
map 6: X — A, if 6(u;) = 0(u}) for 1 < i < n, then §(t) = 6(¢'). Given a
specification P = (X, E), A |E P iff A =y e for every e € E. Given a set of
Y-equations E, we define provability Fy for Y-equations by the following;:

E s (VX) t=t

If Ets (VX)t =1, then E by (VX)t' =t

If E by, (VX)t =t and E by, (VX) ¢ = t", then E s, (VX)t = ¢"

If (VY)t =1t if uy = uj,...,un = u, € E and 0: Y — Tyx) and
Ets (VX)60(u;) = 0(u) for 1 <i < mn,then E Fx (VX)6(t) = 6(t").
5. If Ebs (VY)t; =t; and t; € Tx(x),, for 1 <i<mando: s1...sp =
s, then Bty (VX)o(t1,...,tn) = o(t], ..., th,).

I 'n

THEOREM 3 (Soundness and Completeness). If e is a X-equation, E =x e
iff EFys e O

EXAMPLE 4. A simple example of loose semantics is the theory of groups:

Ll

th GROUP is sort Elt .
op e : -> Elt .
op _-1 : Elt -> Elt [prec 5].
op _*_ : Elt Elt -> Elt .
vars X Y Z : E1t .
eq X x e =X .
eq X * (X -1)
eq (X * Y)x Z
end

e .
X (Y * Z).
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The keyword th introduces theories with loose semantics; it is followed by
the name of the module, GROUP, and closed by the keyword end. Declara-
tions for variables and equations have the obvious keywords. The precedence
“attribute” [prec 5] gives the operation -1 a tight binding (in OBJ, lower
precedence numbers indicate tighter binding).

Order sorted signatures can also include subsort declarations. We do not
develop the theory of order sorted algebra, but do note that all major results
generalize, sometimes with minor modifications.

2.2 Term Rewriting

Many simple equations can be proved by reduction, also called term
rewriting, which applies the available equations to a given term, until
no equation can be applied. This subsection gives some basic theory.

Given a signature ¥ and ground signatures X,Y of variable symbols
(disjoint from X)), a substitution § is a S-sorted set {6;: X, — Ty (V) }.
By Theorem 2, every such 6 extends uniquely to a X-homomorphism
0: Ts(X) = Ts(Y). For any term t € Ty 5(X), let 0(t) = 65(t). Given
aterm p € Ty 4(X) and a term ¢ € Tx 4(Y'), we say p matches ¢ if there
exists a substitution 6 such that 6(p) is syntactically the same as t.

Given a signature ¥ and a ground signature X of variable symbols (dis-
joint from X), a ¥-rewrite rule is a pair of terms, written [ — r, such
that [ and r have the same sort and all variables in r also appear in [. A
Y-rewrite system, or term rewriting system, abbreviated TRS, R is
a set of Y-rewrite rules. A term ¢ rewrites to a term ¢’ using R, written
t =g t' or just t — t', iff there exists a rewrite rule | — r in R and a
substitution 6 such that ¢ has a subterm 6(l) and #' can be obtained from ¢
by replacing 6(1) with 6(r); the term 6(l) is called the redex of the rewrite.
Let —7 be the reflexive and transitive closure of —+g. R is confluent, also
called Church-Rosser, iff whenever ¢t =%, 1 and ¢ =7, t2, then there exists
a term t' such that t; —%, t' and ¢ =% t'. R is terminating iff there is
no infinite rewriting ¢t =% t2 =% .... A normal form of ¢ under R is
a term ¢’ such that ¢' cannot be written and ¢t —% t'; we may write [[t]|r
for the normal form of ¢ under R. A TRS is canonical iff it is confluent
and terminating. It can be shown that in a canonical TRS, every ¥-term
has a unique normal form, called its canonical form. Note that reduction
applies to ground terms only, which means that any variables desired should
be introduced as new constants'. See [Baadera nd Nipkow, 1998] for a basic
survey of one sorted term rewriting.

IThis is justified by the so called Theorem of Constants, which says P |=x (VX) ¢ iff
P =sux ¢, where ¢ is a 3-sentence
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The OBJ languages use term rewriting to provide an operational seman-
tics, by viewing equations as rewrite rules, i.e., by applying equations in the
forward direction. Term rewriting for initial and loose theories is invoked
with the command red, followed by a term (and a period). For example,
given a module INTSET for sets of integers,

select INTSET .
red 3 in insert(l,insert(2,insert(3,empty))).

constructs the set {1,2,3} and then tests whether 3 is in it, in the context
of the module INTSET, which is made the module currently in focus by the
select command. Here is the output:

reduce in INTSET: 3 in insert(1,insert(2,insert(3,empty)))
result Bool: true
rewrite time: 165ms parse time: 4ms

For operations with attributes for associativity, commutativity, or identity,
rewriting is done modulo those equations; details can be found in [Goguen
et al., 2000; Baadera nd Nipkow, 1998] and many other places. The built
in module TRUTH, which is included in BOOL and is by default imported
into every other module, provides a polymorphic binary operation == which
compares the normal forms of its two arguments. For example,

red insert(3,insert(3,empty)) == insert(3,empty) .

returns true, since the two canonical forms are identical; otherwise it re-
turns false. If the TRS is canonical, then true is returned iff the two
terms are provably equal, but if the TRS is non-terminating, reduction may
go into an infinite loop, and if the TRS is not confluent, reduction could
return false when the terms are nonetheless provably equal.

2.3 Initial Semantics

Given a specification (X, E), a natural congruence relation =g can be de-
fined directly from Fyx by t =g t' iff E by (V0)t = ¢/, and we have the
following important initiality results:

THEOREM 5. Given a specification S= (X, E), for any X-algebra A with
A | S, there ezists a unique Y-homomorphism from Tx /=g to A. Given
a set of E of Y-equations, a X-algebra A is initial iff it has no junk (the
Y-homomorphism Ts, — A is surjective) and no confusion (it satisfies only
the equations that can be deduced from E ).

The initial semantics of a specification (X, E) is the class of its initial
algebras. It can be shown that all the initial algebras of a specification
are X-isomorphic. By Theorem 5, T%./ =g is an initial algebra of (X, E).
Because any element in Ty /= can be generated by operations, induction
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is valid for proving properties of initial algebras. Generally, more than one
induction scheme is valid for a given specification.

EXAMPLE 6. The module below defines natural numbers in Peano nota-
tion with five operations: the constant 0, the successor function s, infix
operations + and *, and sum(n) which computes 1+ 2+ ... + n; the keyword
obj indicates that it has initial semantics:

obj NATS is sort Nat .
op 0 : -> Nat .
op s_ : Nat -> Nat .

op _+_ : Nat Nat -> Nat [ assoc comm prec 40 ]
op _*_ : Nat Nat -> Nat [ assoc comm prec 20 ]
op sum : Nat -> Nat .
vars M N : Nat .
eq 0+ M=MNM.
eq s M+ N=s(M+N)
eq 0 *x M =0 .
eqsM*x N=Mx*xN+ N .
eq sum(0) = 0
eq sum(s M) = s M + sum(M)
end

The operations + and * are declared associative and commutative and given
precedence. The equations define the non-constructor operations recursively
over the constructors?, 0 and s, and rewriting proceeds by matching modulo
the equations for the attributes. (The assoc and comm attributes actually do
more than the corresponding equations: they enable parsing and pattern
matching modulo those equations.) These numbers differ from those of
BOBJ’s built in module NAT, which use Java integers and provides many
additional operations.

Induction is an essential aspect of theorem proving, and is valid for mod-
ules with initial semantics (but not loose semantics). Although not directly
supported by the OBJ languages, inductive proofs can be still be done by
the method of proof scores [Futatsugi et al., 2005], as illustrated by the
following;:

EXAMPLE 7. We prove the formula 14+ 2+ ... +n = n(n + 1)/2, in the

form (V N: Nat) sum(N) + sum(N) =N« (s N) .

The first red command below checks the base case, the constant n stands for
the universally quantified variable N in the formula, the equation introduces

2A subsignature II C ¥ is a signature of constructors for a theory P iff for every
(ground) X-term t, there is a II-term t' such that P byt =¢.
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the inductive hypothesis, and the second red checks the inductive step. The
operation == uses rewriting modulo attributes, and returns true iff its two
arguments reduce to the same thing modulo the given attributes.

open NATS .

red sum(0) + sum(0) == 0 * (s 0)

opn : —-> Nat .

eq sum(n) + sum(n) = n * (s n)

red sum(s n) + sum(s n) == (s n) * (s s n)
close

Since both reductions return true, this proof succeeds.

Because this same pattern is followed in many other proofs, encapsulating
it in a reusable module would be useful. But induction is second order, so
this cannot be done with a first order module system; Section 3.3 will show
how to do it using BOBJ’s higher order modules and views.

2.4 Hidden Algebra

Behavioral specifications characterize systems by how they behave in re-
sponse to relevant experiments, rather than how they are implemented. Our
hidden algebra formalization of this intuition distinguishes visible from hid-
den sorts, with equality being strict on visible sorts and behavioral on hid-
den sorts, in the sense of indistinguishability under experiments; thus hidden
sorts are treated as black boxes, the state of which can only be observed and
updated by certain specific operations. Therefore behavioral specifications
impose fewer constraints on the semantics of modules, as a result of which
some inference rules of ordinary equational reasoning are unsound, although
a small modification restores soundness; another result of this extra free-
dom is that no finite set of inference rules can be complete for behavioral
satisfaction [Buss and Rosu, 2000]. Context induction [Hennicker, 1990;
Berregeb et al., 1998] and general coinduction [Goguen and Malcolm, 1999;
Goguen and Malcolm, 1997] are established proof techniques for behavioral
properties, but both need creative human intervention. Circular coinduction
[Rosu and Goguen, 2001] is a powerful circular coinductive rewriting algo-
rithm implemented in BOBJ by C4RwW, and used to automatically proved
many behavioral properties [Goguen et al., 2000a; Goguen et al., 2000b).
A hidden signature ¥ is a signature with its sorts partitioned into visi-
ble sorts V' and hidden sorts H. Operations in ¥ with one hidden argument
and a visible result may be called attributes, and those with one hidden
argument and a hidden result called methods. A hidden X-algebra is
just a X-algebra; elements of visible sort in a hidden X-algebra represent
data, and those of hidden sorts represent states; the subalgebra of visible
sorts and operations of visible sort is called the data algebra. A behav-
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ioral specification or theory is a triple (X,I, E) where ¥ is a hidden
signature, and I' is a hidden subsignature of X, and E is a (finite) set of
Y-equations. The operations in I are called behavioral.

The definition of hidden algebra given above allows a loose interpretation
for the data algebra, following the general approach of [Goguen et al., 2000a;
Rosu and Goguen, 2001]. However, this is not appropriate for some prob-
lems, for example if true and false become identified. This can be reme-
died by requiring every hidden algebra over a given signature to have a fized
data algebra, as in the original version of hidden algebra, or alternatively,
by allowing so called data constraints, in the sense of [Goguen and Burstall,
1992, as additional sentences. Note that general results proved for the loose
data approach will also apply to fixed data algebras, so there is no loss of
generality in proceeding in this way.

Given a hidden signature I', a I'-context, denoted C[O], for sort s is a
I-term in T ({0} U Z) having exactly one special variable O of the sort s,
where Z is an infinite set of special variables different from O. If C[O] is
a D-context of sort s and ¢t € Xy, let C[t] denote the result of substituting
t for O. A T'-context C[O] for hidden sort s is called I'-experiment if its
sort is visible.

If T is a subsignature of a hidden signature ¥ and A is ¥-algebra and ~
is an equivalence on A, then an operation ¢ in ¥, ., is congruent for ~
iff c4(ay,...,an) ~ oalal,...,al,) whenever a; ~ a} for 1 <i <n. A hidden
I'-congruence on A is an equivalence relation on A that is congruent for
each operation in I' and is the identity on visible sorts. The I'-congruence
=1, called behavioral equivalence, on A is defined as follows: two data
elements are equivalent iff they are equal, and two states are equivalent
iff they cannot be distinguished by I'-experiments,i.e., iff any experiment
produces the same value when applied to them. The following is a basic
result:

THEOREM 8. Given a hidden subsignature T' of ¥ and a $-algebra A, =%
is the largest hidden T'-congruence on A.

An operation o is Y-behaviorally congruent for A (or simply con-
gruent) iff it is congruent for =L. A hidden ¥-algebra A I'-behaviorally
satisfies a Y-equation e = (VX) ¢t = t' if uy = ui,...,up, = ul,, written
AEL e, iff for any mapping 6: X — A, if 0(u;) =% 0(ul) for 1 < i < n,
then 6(t) =% 0(#'). If E is a set of S-equations, then A |=% E iff AEL e
for any e € E. We say A behaviorally satisfies a behavioral specification
B = (%,I,E) iff AEL E; we write A|=L B. Define E=L e iff AEL E
implies A [EL e for every algebra A. Define B EL e iff EEL e.

Given a behavioral specification B = (X,T, E), the provability relation
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IFL, for E-equations is defined by the following rules:

1. Reflexivity: E lIFL, (VX) t =t¢.
2. Symmetry: If E lIFL, (VX) t; = to, then E IIFS (VX) ¢y = ¢;.

3. Transitivity: If E IIFS (VX) t; = t2 and E lIF}, (VX) t» = t3, then
E M (VX) t = ts.

4. Substitution: If (YY)t =1¢' if uy = ul,...,up =ul), in Eand §: ¥ —
Ts(X) and E M5 (VX) 6(u;) = 0(ul) for 1 < i < n, then E IIF§
(VX) 6(t) = 6(t").

5. Congruence:

(a) If E MY (VX) t = t' where t,t' € Tsux,, and v € V, and
t1, ey tic1, tig1,y -ty € Txux, then F |”—£ (VX) O'(tl, vy ti—1, 8,
titls s tn) = o‘(tl, N PR A ZE% P tn).
(b) If ElIFL (VX) t; = ¢, for 1 < i < n and o is congruent operation
in ¥, then E MY, (VX) o(ty, ..., tn) = o(t), ..., t}).
Define B I+ (VX)t = t' iff E N (VX)t = ¢ . These rules specialize those
of ordinary equational deduction by considering all sorts visible. Note that
(5b) only applies to congruent operations. If all operations are congruent,
then ordinary equational deduction is sound for behavioral satisfaction. The
following expresses soundness with respect to both equational and behav-
ioral satisfaction, generalizing a result in [Diaconescu and Futatsugi, 1998a)
that equational deduction is sound when all operations are congruent.

THEOREM 9. If B IIF (VX)t = t', then B=L, (VX)t =t' and also E |
vVX)t=t"

General coinduction [Goguen and Malcolm, 1999; Goguen and Mal-
colm, 1997; Rosu, 2000] can be used to prove that a Y-equation (VX)t = #'
is behaviorally satisfied by a behavioral specification B by the following
steps:

e Define a binary relation R on terms (R is called the candidate rela-
tion).

e Show that R is a hidden ¥-congruence.
e Prove that ¢t R ¢'.

Soundness of general coinduction follows directly from Theorem 8. Its ma-
jor problem is that it requires human creativity to define an appropriate
candidate relation. Context induction [Hennicker, 1990] can also be used
to prove behavioral properties, using well-founded induction on the context
structure to show that it is valid for all experiments. But in many real
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examples, context induction is not trivial and requires extensive human in-
put, for example, in the form of inductive lemmas that can be difficult to
discover and difficult to prove [Gaudel and Privara, 1991].

It often happens that some experiments are unnecessary in a context in-
duction, because the equations imply that some experiments are equivalent
to others. A similar but dual situation occurs in abstract data type theory
when all the elements can be generated from a subset of operations, called
the constructors, generators, or basis (when induction is involved). A gen-
eral definition of cobasis is introduced in [Rosu and Goguen, 1998)], and a
simplified version can be given as follows: a cobasis A is a subset of oper-
ations in T' that generates enough experiments, in the sense that no other
experiment can distinguish any two states that cannot be distinguished by
these experiments.

The denotational semantics of a behavioral module is the class of all al-
gebras (i.e., implementations) that behaviorally satisfy specifications, and
their operational semantics is given by behavioral rewriting. Behavioral
modules in BOBJ are defined between the keywords bth and end. Sorts
in behavioral modules are considered hidden unless declared with the key-
word dsort, for visible sorts in behavioral modules. Similarly, operations
in behavioral modules are considered congruent unless given the attribute
ncong.

EXAMPLE 10 (A Behavioral Theory of Sets).

bth BSETNAT is sort Set .

pr NATS .

op empty : -> Set .

op _in_ : Nat Set -> Bool

op insert : Nat Set -> Set .

vars N1 N2 : Nat . var S : Set .

eq N1 in empty = false .

eq N1 in insert(N2, S) = N1 == N2 or N1 in S
end

The first equation gives the result of observing empty with _in_, and the
next equation gives the results of observing insert with _in_.

The most important difference between this behavioral theory and the
initial theory for sets in Example 12 is that this theory does not have the
equation insert(E1, S) = S if E1 in S . Although the other equations
look the same, they are methodologically different. Data theories are usually
designed with respect to constructors, but behavioral theories are designed
with respect to observors. For example, empty and insert are constructors
of the data theory SET, i.e., all ground sets can be created with them; and
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then all other operations can be defined based on the terms generated by
these constructors.

We recommend designing a behavioral theory by selecting some opera-
tions as a cobasis to generate the behavioral equivalence relation, and then
defining other operations with respect to these basic observers. For exam-
ple, in BSETNAT above, the operation _in_ is the unique observer in the
cobasis, so that two sets are behaviorally equivalent iff they always return
the same visible results under the observation of _in_, i.e., iff they have the
same elements. Then for example, the traditional implementation of sets as
lists with possible repetitions is behaviorally correct.

2.5 Logical Programming

Our claim that the OBJ languages are rigorously based on versions of equa-
tional logic is best demonstrated by defining the notion of logical program-
ming language, and then showing how the various OBJ computations fit
that definition. To be fully formal would require formalizing the notion of
“a logic,” including both deductive and model theoretic aspects. Such a
formalization was sketched in the main paper on institutions [Goguen and
Burstall, 1992], was carried further in a somewhat different way by Meseguer
in [Meseguer, 1989], and was recently more fully realized in [Mossakowski
et al., 2005). Here we leave that notion informal, assuming that a logic £
has notions of signature X, ¥-sentence (with Sen(X) the set of all these),
Y-model (with Mod(X) the class of all these), Y-satisfaction =5 and X-
deduction Fy such that deduction is sound, i.e., such that P Fy e implies
P |=5 e where P is a set of ¥-sentences, e is a Y-sentence, and P =5 e
means that M |=x P implies M =5 e for all ¥-models M. Readers familiar
with institutions with proofs [Mossakowski et al., 2005 will see how to use
that notion to fully formalize the above. Although it is less clear how to
formalize the meta-logic £’ introduced below, it suffices to let it be just the
ordinary language of mathematics, applied to £; in particular, it allows talk
about proofs in L.

A program P of a logical programming language over a logic £ is a
theory over L, i.e., a set of Y-sentences; a query is a sentence in £’ of the
form (3X) ¢(X) where X is a set of variable symbols; and an answer to
such a query is an assignment a from X to terms in £’ such that ¢(a) is in
Sen(X) and P tyx g(a), where g(a) denotes the result of substituting a(z)
into ¢ for each x in X; this is sound with respect to the intended models by
assumption.

We now consider some examples. The first is loose semantics for (say)
many sorted (or order sorted) equational logic, where signatures declare
sorts (with subsorts) and operations, where sentences are equations, models
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are algebras, and satisfaction and deduction are as usual. Queries are of the
form (3p) p = e where p is a variable for proofs over P, e is an equation, and
P denotes the equation that p proves. Here we have query completeness
in the sense that a query (3X) ¢(X) has an answer a with P Fyx ¢(a) iff
P =5 q(a) (this generalizes the query completeness notion of [Meseguer,
1989] to our setting).

Our second example is initial semantics for many sorted (or order
sorted) equational logic, where the relation P =5 e is restricted to initial
models for P, and where queries have the form (3p) p = e, and where deduc-
tion allows induction as well as equational reasoning. Query completeness
holds here, although there is no algorithm that can realize it.

Our third example is pure logic programming, in the sense used in
the Prolog community (e.g., [Lloyd, 1987]). Here signatures ¥ declare rela-
tion symbols, ¥-sentences are Horn clauses, and Y-queries have the form?
(3X) R(X) where R is a conjunction of relations applied to variables,
and deduction is resolution. Then a suitable Herbrand theorem (e.g., see
[Goguen and Meseguer, 1986]) implies that we can use either loose or initial
semantics, and that query completeness holds. All this extends to many
sorted Horn clause logic with equality [Goguen and Meseguer, 1986).

Our fourth example is term rewriting over equational theories P that
are terminating. Here sentences are rewrite rules, queries have the form
(3t') t = t' where t' is reduced with respect to P, and deduction is term
rewriting with P. This is not query complete over loose semantics, unless P
is also Church-Rosser and therefore canonical, in which case initial semantics
also applies.

Our fifth example is behavioral semantics as implemented by BOBJ’s
C4RW algorithm [Goguen et al., 2003; Goguen and Lin, 2003]. Here pro-
grams are signatures (that include congruence declarations for some oper-
ations) with sets of rewrite rules and a cobasis declaration; satisfaction is
behavioral; deduction is c4rRw, shown sound in [Goguen et al., 2003]; and
queries have the form (3p) p = e where e is a behavioral equation and p
is a c4RW proof. This is neither query complete nor reducible to initial
semantics.

The first and fifth examples would not usually be called programming,
because instead of computing a value, they try to prove an assertion. How-
ever, we claim that verification is the proper analog of programming for
the level of specifications. Moreover, C4RW is surprisingly efficient when it
terminates, e.g., [Goguen et al., 2003] — which it may not, just as with ordi-

3Tt would be more consistent with our other examples to ask for proofs of R(X) instead
of just the substitution. Note that asking for a proof as output is just asking for a trace
of a computation.
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nary programming. Note that when C4RW fails to return true, the equation
tested could still be valid, due to the necessary incompleteness of behavioral
deduction. On the other hand, the first example is very far from being effi-
cient, so that its computations, which essentially are blind searches, should
not properly be called programming; in fact, the OBJ languages do not
implement this, but rather allow users to construct proofs by hand. But if
the program is canonical, then the validity of equations can be decided by
checking whether or not the two terms have the same reduced forms, using
the built in == operation; this can be seen as based on initial semantics.
We conclude that Meseguer’s initiality requirement in [Meseguer, 1989] is
reasonable for those computations that are ordinarily called programming,
because fixed data structures such as integers are likely involved, though
this is not necessarily the case, e.g., for term rewriting proofs of equational
identities in the theory of groups. However, query completeness is less rea-
sonable, and neither requirement is appropriate if we wish to capture all
of the semantics of OBJ family languages. Nevertheless, these two notions
usefully enrich our understanding of the nature of computation.

We finally remark that the logical “existential” or “query” semantics
sketched here is not limited to first order languages. For example, it also
applies to pure functional programming languages, such as Haskell [Hudak
et al., 1992], though we omit the details, some of which can be found in
[Meseguer, 1989]. Moreover, it applies to databases and to brokers in service
oriented architectures.

3 Modularization

The module systems of parameterized programming go well beyond those
of standard programming languages. We believe that views are not just a
syntactic convenience, but are necessary for realizing the full potential of
module parameterization. For example, we speculate that the lack of views
explains the confusing multiplicity of semantics that have been given for
ML functors (“functor” is ML terminology for parameterized module, see
[Ullman, 1998]), as well as its awkward treatment of sharing.

3.1 Parameterization and Views

Given signatures ¥, ¥’ with sorts S, S’, then a signature morphism ¥ —
¥ is a pair (f,g) where f: S — S’, and g is an (S* x S)-indexed function
Juw,s: SDw,s — E_If(w),f(s)' A view, or theory morphism , from a theory
T = (%,E) to a theory T' = (X', E') is a signature morphism v: ¥ — ¥’
such that if (VX) ¢ = t' is an equation in E, then E' - (VX) w(t) = v(t')
where X ;) = X, for any sort s € ¥ and v: Tyx) — 1. (%) is the X-
homomorphism induced by v; we may write v: T — T'. The OBJ languages
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do not check semantic correctness of views, but only their syntax; therefore
users should check the semantics.

EXAMPLE 11 (A Simple View).

view V from GROUP to INT is
sort E1t to Int .
op (_ -1) to (-.)
op (_*_) to (_+.)

end

View syntax is straightforward, except that when items are omitted, the
system tries to figure out those missing items; the resulting views are called
default views, see [Goguen et al., 2000] for details.

A parameterized specification or parameterized theory is a pair
(T1,T2) of specifications such that T; is included in T»; we call T} the
parameter or interface theory and 75 the body. In Example 12 below,
T, is ELT and T is SET. Instantiation of (71,7>) with an actual parameter
P requires a view T — P to describe the binding of actual to formal
parameters; often a default view can be used. Following ideas developed for
the Clear specification language [Burstall and Goguen, 1981; Goguen and
Burstall, 1992], the instantiation is given by a colimit construction.

EXAMPLE 12 (A Parameterized Initial Theory of Sets). The initial theory
SET below allows us to form sets of elements from any collection with an
equality relation defined on it satisfying the law of identity, given in its
interface theory ELT. Parameterization of a module M by an interface I is
indicated with the notation M[X :: I], where X is the formal parameter of
the parameterized module.

th ELT is sort Elt .
op eq : E1t E1t -> Bool .
var E : Elt .
eq eq(E, E) = true .

end

dth SET[X :: ELT] is sort Set .
op empty : -> Set .
op _in_ : Elt Set -> Bool
op insert : Elt Set -> Set .
vars E1 E2 : Elt . var S : Set .
eq E1 in empty = false .
eq E1 in insert(E2, S)

eq(E1l, E2) or El1 in S
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eq insert(El, S) = S if E1 in S .
end

The following tells BOBJ to instantiate SET with the builtin module INT of
integers, and call the result INTSET:

dth INTSET is
pr SET[INT]
end

This uses a default view from ELT to INT and pr (for “protecting”) indicates
a importation.

Two additional features from parameterized programming are renaming
and sums of modules. The first allows selected sorts and operations to be
renamed within a module; this can be very helpful when reusing modules
in new contexts. The sum just combines two or more modules, taking
proper account of any shared submodules that may have arisen through
importation. The syntax of these features is illustrated in the following;:

dth NATS+INT is
pr NATS *(sort Nat to Peano, op O to zero) + INT .
end

Here a sort and constant of NATS are renamed to avoid conflict with those
of INT, and the two modules are then combined; the parser can determine
whether the sort of any given term is Peano or Int, even though the oper-
ations _+_ and _*_ are overloaded.

EXAMPLE 13 (Behavioral Theory of Streams). The behavioral specifica-
tion STREAM declares infinite streams parameterized by the “trivial” interface
theory TRIV, which only requires that some sort be designated.

th TRIV is sort Elt . end

bth STREAM[X :: TRIV] is sort Stream .
op head_ : Stream -> Elt .
op tail_ : Stream -> Stream .
op _&_ : Elt Stream -> Stream .
var E : EIt . var S : Stream .
eq head(E & S) = E .
eq tail(E & S) = S .
end

The operation _&_ inserts an element into the head of a stream, and head
and tail respectively return the first element, and the stream after remov-
ing its first element. The next specification adds an operation which “zips”
two streams together by taking elements from them alternately:
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bth ZIP[X :: TRIV] is pr STREAM[X]
op zip : Stream Stream -> Stream .
vars S S’ : Stream .
eq head zip(S,S’)
eq tail zip(S,S’)
end

head S .
zip(8’, tail S)

The picture below shows the application of zip to two input streams:

%{ b3 as b2 a2b1 ap

The command red does behavioral rewriting in the context of a behav-
ioral theory. For example,

open ZIP[NAT]

ops ones twos : -> Stream .
vars S S’ : Stream .
vars N M : Nat .

eq head ones =1 .
eq tail ones = ones .
eq head twos = 2 .
eq tail twos = twos .

red head tail tail zip(ones, twos).
close

We will use these behavioral theories in later examples.

3.2 Behavioral Views

Behavioral parameterized theories can use any kind of theory as their in-
terfaces, but the interfaces of non-behavioral theories must not be be-
havioral theories, i.e., behavioral theories are only allowed as interfaces
for other (parameterized) behavioral theories. Given behavioral theories
B; = (3,1, E;) for i = 1,2, let the set of visible sorts and the set of hidden
sorts in B; be V; and H;, respectively. Then a behavioral view from B
to Bs is a signature morphism v: ¥; — ¥, such that: (1) v(s) € V5 for
any sort s € Vi; and (2) for any equation (VX) t = ¢/, if BiE (VX)t =1,
then Bo|= (VX)0(t) = v(t') where X,(;) = X, for any sort s € ¥; and
v: Ty (x) = TZQ(X) is the homomorphism induced by v.

Notice that this definition of behavior views requires verifying all behav-
ioral properties of the source module, which is impossible in practice. It
is sufficient to define a signature morphism v from By to Bs such that (1)
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all translated equations of By are behaviorally satisfied by Bz; and (2) the
image of a cobasis of By under v is a cobasis of By. This is because it then
follows that any behavioral property of B; is also behaviorally satisfied by
Bs. In practice, the condition (2) above can be satisfied by making some
operations non-congruent.

3.3 Higher Order Parameterized Programming

Since [Gpgiem, 1988] shows that first order parameterized modules give
essentially all the programming power of higher order functional languages
but with a first order logic, one may ask what higher order parameterized
modules can add to this. The answer is that they add an architectural level
of structural description and reuse that goes well beyond that of first order
modules, as shown by the example below.

As already mentioned, all current OBJ family languages have first order
parameterized modules and views, including Maude and CafeOBJ, as well
as CASL. OBJ3 for some time has had formal parameters that are parame-
terized by previously introduced formal parameters [Goguen and Malcolm,
2000], but BOBJ is the only language that provides higher order views.
A very different approach to higher order modularization based on the A-
calculus and type theory, appears in Extended ML [Sannella and Tarlecki,
1986], in ASL [Sannella et al., 1992], and in its extension ASL+FPC [As-
pinall, 2003]. Recent SML/NJ releases of ML, [Milner et al., 1997] include
higher order parameterized modules, based on higher order parameterized
signatures, but without views. C++ allows higher order parameterized tem-
plates, but these amount to little more than macro expansions with type
checking. Larch [Garland, 1999] has a parameter passing mechanism that
can simulate some uses of first order views, but it does not support views as
reusable first class citizens. A new semantics for higher order parameterized
programming is given in Section 3.3. We first illustrate the main ideas with
an inductive proof scheme written in BOBJ.

A Reusable Induction Scheme

This subsection illustrates higher order parameterized programming by defin-
ing a reusable induction scheme?* that builds on one in [Goguen and Mal-
colm, 2000], which in turn built on [Yatsu and Futatsugi, 1995]. The in-
terface module NIND below requires constructors for basic Peano induction
for natural numbers; it is the interface for the induction scheme, which will
be instantiated with actual modules which specify the inductive problem to
be solved. Because NIND has initial semantics, allowable actuals must also

4The modules in this example are generated by hand, but the Kumo system generates
(first order) inductive proof schemes automatically [Goguen and Lin, 2001].
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have initial semantics for their two operations that correspond to those in
this module.

obj NIND is sort Term .

op c : -> Term .
op f : Term -> Term .
end

We now define terms over NIND by introducing a new constant symbol x of
sort Term; this will be the induction variable.

obj TERM [X :: NIND] is
op x : —> Term .
end

Because TERM has NIND as its interface, instanting it with an actual module
A gives a module that defines terms over the operations of A. For example,
if the formal parameter of TERM is instantiated with NATS, then sum(x) +
sum(x) is one of the resulting terms. This module has initial semantics
because we want its models to contain all and only terms in the variable x.

The interface theory below calls for two terms, for the left and right sides
of an equational goal:

th GOAL [X :: NIND] [T :: TERM[X]] is
ops 1 r : -> Term .
end

Because its first keyword is th (for theory), this module has loose semantics,
which allows its two constants to be instantiated arbitrarily. It has two
formal parameters, the first with interface NIND, with the second, TERM[X],
dependent® on the first. The two constants, 1 and r, represent the left and
right sides of a goal.

A module with its interfaces separated into groups with brackets can
be partially instantiated by providing actual modules for the parameters
in the first group, with result a module parameterized by the remaining
parameters, and having the partial instantiation as its body. Now we define
the induction scheme:

th SCHEME [P :: NIND, G :: GOAL[P]] is
us B is G[(c).(TERM[P])]
let base = 1.B == r.B .
us H is G[(x).(TERM[P])]
eq 1.H=r.H .
us C is GL[(£(x)).(TERM[P])]
let step = 1.C == r.C .

5This gives the effect of what is called a dependent type in type theory.
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let proof = base and step .
end

The second interface of SCHEME is a parameterized module having GOAL [P]
as its interface. The first line of the body of SCHEME instantiates G with
TERM[P] by mapping the symbol x in its formal parameter TERM[P] to c
in the actual parameter TERM[P], which is denoted (c).(TERM[P]) using
the “dot” qualification convention; the result is then renamed B (for base)
and is imported, where the keyword “us” indicates importation without
requiring initiality or any other constraints to be satisfied. The equation
base = 1.B == r.B is well defined because 1 and r are constants of the
sort Term.G[(c) . (TERM[P])] in B. Similarly, the H and C importations are
for the induction hypothesis and the inductive step. Lines 2,3,5 of the body
of SCHEME correspond to lines 1,3,4 of the body of the above “open”, except
that SCHEME must be instantiated before the proof can be executed, and the
two cases to be checked are conjoined into one by “and”.

In more detail, to do an inductive proof using SCHEME, we first instantiate
its first formal parameter P with an actual module containing appropriate
functions over its constructors, then we instantiate its second formal param-
eter G with two terms over that, say defined by an actual module M. Then B
is calculated as M[(c) . (TERM[P])], and all the operations in G are replaced
by operations from M. More precisely, a view from G[(c) . (TERM[P])]) to
M[(c) . (TERM[P])] is created for replacing the operations of B in SCHEME.
So to apply SCHEME to NATS, we first define a view from NIND to NATS,

view NINDV from NIND to NATS is

op f to s .
end

which will instantiate the first parameter of SCHEME to NATS. Notice that
the mappings sort Term to Nat and op ¢ to 0 need not be stated here,
since they are inferred by the default view mechanism. On the other hand,
op f to sisneeded because there are two unary operations in NATS. Once
SCHEME is instantiated with NATS, its second parameter becomes G [NINDV],
which we instantiate with

view SUMV from GOAL[NINDV] to GOAL[NINDV] is
op 1 to (sum(x) + sum(x))
opr to (x *x s x)
end
so that the complete instantiation is accomplished with the command
make SUM-PROOF is SCHEME[NINDV, SUMV] end

This evaluates the module expression in its body and gives it the name
SUM-PROOF. In the evaluation, B is calculated as GOAL[NINDV] [(0) .TERM
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[NINDV]], using the view from G[P][(c) .TERM[P]] to GOAL[NINDV][(0).
TERM[NINDV]] that BOBJ automatically generates, with the body

op 1 to sum(0) + sum(0)
opr to 0 x s 0 .

Since SUMV maps 1 to sum(x) + sum(x), when the (still parameterized)
module GOAL[NINDV] is instantiated with TERM[NINDV], then x is mapped
to 0, so that 1 is mapped to sum(0) + sum(0). Under the above view,
the equation base = 1.B == r.B becomes base = sum(0)+ sum(0) ==

* s 0. Similar work is done for the modules H and C. Thus SUM-PROOF
contains

eq base = sum(0) + sum(0) == 0 * s O .
eq sum(n) + sum(n) = n * s n .
eq step = sum(s n) + sum(s n) == s n * s s n .

and then the whole proof can be checked with just one command,
red proof .

for which BOBJ returns true after execution. However, users often want
to see more detail, which can be accomplished by first giving the command

set trace on .

Actually, there is a simpler way to instantiate using a so-called in-line view:

make SUM-PROOF is SCHEME[NINDV, view to GOAL[NINDV] is
op 1 to sum(x) + sum(x). end] end

and NINDV could also be replaced by an in-line view.
Of course, higher order modules can do much more than this.....

Semantics for Higher Order Modules

This section sketches a semantics for higher order modules, based on the
categorical general systems theory of [Goguen, 1971; Goguen and Ginali,
1978], particularly its higher order capability, the importance of which was
emphasized (to Goguen) by Gregory Bateson in the early 1970s. This sec-
tion assumes familiarity with category theory (for which see [Fiadeiro, 2004;
Pierce, 1991] among many other sources), and necessarily begins rather ab-
stractly. The intention is to develop an approach that is independent of
any particular linguistic basis, and that in particular transcends the ad hoc
peculiarities of the many architecture description languages that have been
proposed. The approach also applies to mainstream imperative program-
ming languages, e.g., by using underlying concrete institutions like those
proposed in [Goguen and Tracz, 1999]. A semantics for the Maude module
system in [Duran and Meseguer, 2003] is rather similar, but applies only



Specifying, Programming and Verifying with Equational Logic 25

to the first order case, and is formulated as an institution the signatures of
which are diagrams of theories.

The most basic construction is the category D(C) of diagrams over a
category® C, which has objects functors B — C from a variable base category
B to the fixed target C, with morphisms from a: By — C to b: By — C
being a functor f: A — B plus a natural transformation a: f; b= a (where
“” denotes composition), with the evident identities, and with composition
(f,0);(g9,8) = (f;9, (f*B);a) where (g, 8) is a morphism from bto ¢: Bz —
C. Then D(C) is cocomplete if C is”; it will be convenient to write | D for the
colimit of D in D(C). Also, note that there is a natural injection C — D(C),
for which we will use the notation [_], and that | _ is right adjoint to [].

Since D can be applied to any category, we can form D(D(C)), which we
denote by D?*(C) or just D?; now we can iterate to form D", with D = C
by convention; moreover, we can form the colimit in Cat of the sequence of
natural injections

since Cat is cocomplete; denote this colimit D*°. Also, there is a functor
Colim: D* — D which computes the diagram of colimits of a diagram
of diagrams®; substituting D" ~'(C) for Cgives also Colim: D"** — D".
Similarly, let [_] denote any injection D™ — D™**  let | _ denote any colimit
functor D"t — D™, let |2 denote || and more generally, let [ *: D¢ —
D™. Finally, let | ®° denote the map D*° — C induced by all the maps
4 ™: D" — C. Then it is not hard to see that Colim[D] = D, that
L[D] = D, and that | Colim D =|2D, among other such identities®.

To apply this machinery to higher order modules, we substitute for C
a category T of theories (which for BOBJ would involve constraints in the
sense of [Goguen and Burstall, 1992] for initial semantics); T contains the
basic, or zeroth order, modules. First order modules lie in D(T), second
order modules in [D2('I]'), an so on; from now on, we write just D, D?, etc.
The functor | *° computes the zeroth order specification of a system built
by composing higher order modules. Note that the sum operation (+) on
theories is just coproduct, and that the same applies to diagrams of any
order. We do not give a categorical semantics for renaming (the * operation)
because it is easier (almost trivial) to define it operationally, and in any case,
colimits do not need to care much for names, since they keep careful track
of where names come from.

6Tt helps to handle submodule sharing if C is a category with inclusions in the sense
of [C#zinescu and Rogu, 1997; Cizinescu and Rogu, 2000].

"This follows from its being the indexed category [_,C] using general results about
indexed categories.

81t can be obtained by extending the colimit functors on each [B,C] to all of D(C).

9However, these only hold up to isomorphism.
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Parameterization and instantiation are more interesting. Parameterized
programming [Goguen, 1989; Goguen et al., 2000] defines a parameterized
module to be a theory inclusion i : P — B where P is the parameter theory
and B is the body (see Section 3.1). This works well, but it does not capture
the idea that the inclusion itself is a module. However, we can do this with
above machinery by encapsulating i, i.e., by viewing it as a diagram M,
i.e., as an object in D. This shift of level is part of a much richer, software
architecture oriented point of view, in which module instantiation appears
as a kind of module interconnection, instead of a perhaps ad hoc seeming
pushout: let A be an actual parameter for M, i.e., let there be given a
“fitting morphism” f: P — A; then the instantiation of M by A is indicated
by the module interconnection diagram n: [A] — M in D?  where the
functor component of n maps the one object of the category that underlies
[A] to the object underlying P in M, and the natural transformation of n
is f.

Of course, much more can be done, by making use of more complex di-
agrams of higher orders. Sockets, pipes, connectors, ports, adaptors, chan-
nels — the entire zoo of contemporary software architecture is naturally
modeled in this formalism, without needing to bring in any additional ad
hoc features. The final chapters of a recent book [Fiadeiro, 2004] by José
Fiadeiro contain much that is relevant to this topic, though with a different
semantics; in particular, it provides excellent motivation for higher order
parameterized modules, with many examples from software engineering. It
seems likely that an alternative approach can be developed based on John
Gray’s Cartesian closed category of sketches [Gray, 1989).

We now return briefly to the induction scheme of Section 3.3. The module
TERM is a first order parameter theory for the second order module GOAL,
which in turn is a parameter theory for the third order module SCHEME,
which has further structure arising from its internally defined modules B,
H, and C. The modules TERM, GOAL and SCHEME are also all parameterized
by NIND, but instantiating NIND with NAT using the view NINDV and taking
the colimit still yields a third order module, because SCHEME is still param-
eterized by the second order (but now partially instantiated) module GDAL.
The next step instantiates GOAL with itself, using a tricky view SUMV that
introduces the terms to be proved equal. Now taking the colimit collapses
to a zeroth order theory in which the computations can take place, triggered
by a single command. (It is possible to draw some helpful diagrams for all
this, but there isn’t sufficient room in this paper.)

It is interesting to notice that techniques like those used for higher order

modules can also be used to define higher order data types. We illustrate
this with a simple example instead of giving a general construction. Let
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L: T — T be the functor which sends a theory T to the theory T'+LIST[T],
and construct the sequence

=1t =12 5013 — ...

where 1% =T, L' = L(T), L = L(L(T)), etc., with the evident inclusions.
Then its colimit includes elements, lists, lists of lists, lists of lists of lists,
etc. It seems there may be an amusing analogy here with continued fractions
that is worth further exploration.

4 Circular Coinductive Rewriting

Behavioral rewriting [Diaconescu and Futatsugi, 1998a] is to behavioral de-
duction what standard rewriting is to standard equational deduction, a
simple but useful proof method. Based on the notion of cobasis, a more
powerful proof method called circular coinduction is introduced in [Rosu
and Goguen, 2001]. A enriched behavioral deduction system can be got by
adding the following rule: Suppose A is a cobasis of a behavioral specifica-
tion B = (£,T, E) and < is a well founded partial order on I'-contexts which
is preserved by the operations in I'. For any terms #; and t2 in T%(X), if for
any § € A and for appropriate variables W, B lIFL, (VX)(YW)d(t1, W) =
c[0(t1)] and B IFL (VX)(YW) d(ta, W) = c[0(t2)] and ¢ < 6, or else B I
(VX)(YW)§(t1, W) = wand B IIFY (VX) (VW) 6(ta, W) = u for some [-term
u, then B III-E (VX)t1 = ta. Circular coinductive rewriting proves behav-
ioral equalities by combining behavioral rewriting with circular coinduction
[Goguen et al., 2000a]; it also strengthens the duality with induction by
allowing coinductive hypotheses to be used in proofs.

BOBJ provides a limited operational semantics for behavioral modules,
by applying equations as behavioral rewrite rules. Because of non-congruent
operations, ordinary rewriting is not in general sound, as illustrated by the
following behavioral theory with a non-congruent operation:

EXAMPLE 14 (Nondeterministic Stacks). The following behavioral variant
of a stack theory illustrates one way that nondeterminism can arise in hidden
algebra specifications:

bth NDSTACK is sort Stack .
protecting NAT .

op push _ : Stack -> Stack [ncong]
op top _ : Stack -> Nat .
op pop _ : Stack -> Stack .

var S : Stack .
eq pop push S =S .
end
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The operation push places a nondeterministically chosen natural number on
the stack’s top. Even for behaviorally equivalent stacks S1 and S2, push(S1)
and push(S2) may insert different natural numbers onto S1 and S2; there-
fore push(S1) and push(S2) may be distinguishable by the attribute top,
so that push should be declared non-congruent. The equation in this speci-
fication says that a stack is not behaviorally changed by pushing a new ele-
ment and then popping it. Notice that push(pop(push(S))) == push(S)
is not behaviorally satisfied, although pop (push(S)) and S are behaviorally
equivalent. However, ordinary rewriting will reduce push (pop (push(S)))
to push(S).

Behavioral rewriting is invoked with the command red, which handles
non-congruent operations properly. A term C[6(l) ] behaviorally rewrites
to C[6(r)], where C[O] is a context and I — r is a rewrite rule, iff one of
the following is satisfied:

1. The redex does not have a non-trivial context.
2. All operations from the top of C down to O are congruent.

3. The context of the redex has a subcontext D such that all the op-
erations from the top of D to O are congruent and D has a visible
sort.

For example, push (pop (push(S))) cannot be reduced to push(S), because
the context push(0) doesn’t satisfy the conditions above.

Behavioral rewriting can prove simple behavioral properties, but more
powerful methods are needed to verify more difficult behavioral properties.
Unlike general coinduction [Goguen and Malcolm, 1997] and context induc-
tion [Berregeb et al., 1998], conditional circular coinductive rewriting with
provides a powerful way to prove behavioral properties, without intensive
human intervention. The c4Rw algorithm also includes very useful capabil-
ities for automatic cobasis discovery and for case analysis; the algorithm is
described in detail and proved correct in [Rogu and Goguen, 2001], and is
also described and then illustrated with a correctness proof for a non-trivial
version of the alternating bit protocol in [Goguen and Lin, 2003].

4.1 Mutual Coinduction

Behavioral operations can mutually depend on each other. In this case,
behavioral properties {Pi, ..., P, } may also depend on each other, in such a
way that no P; can be proved by itself, but they can all be proved together.
The BOBJ syntax for this is:

cred (<goal>) ... (<goal>)

where the goals may be conditional . Mutual circular coinductive rewrit-
ing is in the c4rRw algorithm. The example below uses operations odd
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and even which take a stream and return streams respectively formed by
the elements in the odd and even positions of the argument stream. Thus
odd(ejesezesesegereg...) is ejezeser..., while even(e;e,ezeseseq
er, eg ) is €g ey egeg....
bth ODD-EVEN[ X :: TRIV ] is pr ZIP[X]

var S : Stream .

ops (odd_) (even_) : Stream -> Stream .

eq head odd S = head S .

eq tail odd S even tail S .

eq head even S = head tail S .

eq tail even S = even tail tail S .

end

This module imports ZIP, and all its operations are behavioral since they
all preserve the intended behavioral equivalence, which is ‘two streams are
equivalent iff they have the same elements in the same order.” The property
zip(odd S, even S) = S is proved by circular coinduction with:
cred zip(odd S, even S) ==
We next introduce a behavioral module for infinite binary trees:
bth TREE[ X :: TRIV ] is sort Tree .
op root_ : Tree -> Elt .
ops left_ right_ : Tree -> Tree .
op make : Elt Tree Tree -> Tree .
var E : E1t . vars T1l T2 : Tree .

eq root make(E, T1, T2) = E .
eq left make(E, T1, T2) = T1 .
eq right make(E, T1, T2) = T2 .

end

Given a tree, the operations root, left and right respectively return its
root, its left subtree, and its right subtree; these three operations are a
cobasis of Tree. The operation make takes an element and two trees to
create a new tree. Next, define an operation t2s, which transforms trees
into streams, and an operation s2t which does the inverse:

bth TREE-STREAM [ X :: TRIV ] is
pr TREE[X] + ODD-EVEN[X]
op t2s_ : Tree -> Stream .
op s2t_ : Stream -> Tree .
var T : Tree . var S : Stream .
eq head t2s T = root T .
eq tail t2s T zip(t2s left T, t2s right T)
eq root s2t S head S .
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s2t tail odd S .
s2t even S .

eq right s2t S
eq left s2t S
end

In converting a tree to a stream, t2s first outputs its root, and then inter-
leaves streams from its left and right subtrees, as illustrated in the following:

@
@/ 5
@/ \@ ®/ \@ [1,2,3465,7,...
VANV ANRVANRY AN

To build a tree from a stream, s2t uses the head of the stream as root, and
uses the stream got by selecting all elements at odd positions except the
first to build the right subtree, and all elements at even positions to create
the left subtree. In the following, two behavioral properties are first proved
and then introduced as lemmas for proving that s2t and t2s are inverse
operations:

open .
vars S S1 S2 : Stream .
var T : Tree .
cred even zip(S1, S2) == S2 .
eq even zip(S1, S2) = S2 . *x*x lemma
cred zip(even S, even tail S) == tail S .
eq zip(even S, even tail S) = tail S . *** lemma
cred even t2s T == t2s left T .
eq even t2s T = t2s left T . *%% ]lemma
cred s2t t2s T == T .
cred t2s s2t S == S .
close

The following defines functions f and g on trees and streams respectively,
which will turn out to be identity functions. For any tree T, left (£(T))
is defined by first taking the left subtree of T, and then converting it to a
stream, and then applying g to the stream (since g is an identity function,
this will be just the original stream), and then transforming the stream back
to the tree, and finally applying £ to this tree. Other cases are similar.

bth SETUP [ X :: TRIV ] is pr TREE-STREAM [X]
op f_ : Tree -> Tree .
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op g_ : Stream -> Stream .
var T : Tree . var S : Stream .

eq root £ T = root T

eq left £ T =f s2t g t2s left T

eq right £ T = f s2t g t2s right T

eq head g S = head S

eq tail g S =g t2s f s2t tail S
end

This way of defining £ and g are not so unusual in practice. Sometimes it is
hard to define an operation on a given sort directly, but we can transform
it to an element on another sort, then use the operations on that sort, and
finally transform the result back to the original sort. Now we prove f and
g are identity functions in the following;:

set cobasis of TREE-STREAM .

open
eq s2t t2s T =T
eq t2s s2t S =S .
cred (fT==T) (gS==58)
close

This produces the following BOBJ output:
c-reduce in SETUP :

fT==T
gsS =38
using cobasis of SETUP:
op head _ : Stream -> Elt [prec 15]
op root _ : Tree -> Elt
op left _ : Tree -> Tree
op right _ : Tree -> Tree
op tail _ : Stream -> Stream [prec 15]

handled: £ T == T
reduced to: f T ==
add rule (C1) : f T =T

handled: g S == S
reduced to: g S ==
add rule (C2) : g S =S8

target is: £ T ==
expand by: op root _ : Tree -> Elt
reduced to: true

nf: root T

target is: £ T ==
expand by: op left _ : Tree -> Tree
deduced using (C1, C2) : true
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nf: left T

target is: £ T ==

expand by: op right _ : Tree -> Tree
deduced using (C1, C2) : true
nf: right T

target is: g S ==
expand by: op head _ : Stream -> Elt [prec 15]
reduced to: true

nf: head S

target is: g S ==

expand by: op tail _ : Stream -> Stream [prec 15]
deduced using (C2, C1) : true
nf: tail S

result: true

c-rewrite time: 327ms parse time: 3ms
In this proof, two new “circularity” rules, C1 and C2, are added in the
first two steps. The third step expands the goal £(T) == T by using root,
and then the new goal is proved by behavioral rewriting directly. The
next step gets a new goal by expanding the same goal using left, and the
output above shows that both sides of this new goal reduce to 1left (T) by
behavioral rewriting. The following shows the steps of this proof, using both
C1 and C2:

left £ T (using left £ T = f s2t g t2s left T )
— f s2t g t2s left T (using Cl, £ T =
— s2t g t2s left T (using C2, g S =
— 82t t2s left T (using s2t t2s T
— left T

N v A
— —~—

The circularity g S = S which is used in the proof could not be proved if £
T == T were the only coinductive goal.
EXAMPLE 15. Fibonacci and Other Streams We can define a gener-

alized Fibonacci function by
fib(n+2) = fib(n+ 1)+ fib(n)

where fib(0) and fib(1) may be given any values. Using STREAM as defined
above, the following defines a stream fib of generalized Fibonacci numbers:

bth FIBO-STREAM is pr STREAM[NAT]
vars M N : Nat .
op fib : Nat Nat -> Stream .
eq head fib(M, N) = M .
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eq tail fib(M, N) = fib(N, M + N)
end
Note that for any natural numbers M and N, the first and second elements of
the stream fib(M, N) are the first and second arguments of £ib. All other
elements in the stream fib(M, N) are the sums of the two prior elements.
Now suppose the function g is defined on natural numbers by:

gn+2) = gn+1)+g(n) if niseven
gn+2) = gnh-1) if n is odd

where ¢(0) and g(1) can again be given any values. The following defines
streams of these numbers:

bth G-STREAM is pr ODD-EVEN[NAT]
vars M N : Nat .
op g : Nat Nat -> Stream .
eq head g(M, N) = M .
eq head tail g(M, N) = N .
eq head tail tail g(M, N) = M + N .
eq head tail tail tail g(M, N) = M .
eq tail tail tail tail g(M, N) = g(M + M + N, M + N)
end
If fib(0) = g(0) = M and fib(1) = g(1) = N, then the property fib(n+2) =
g(2n + 1) can be expressed in the query
tail tail fib(M,N) == tail odd g(N, M)
However, this cannot be proved directly, because it generates infinitely many
new proof tasks. Moreover, the property only covers the situation where
g is applied to odd natural numbers, so we need a property covers even
natural numbers, namely fib(n) = g(2n). These two properties each need
the other, and though neither can be proved by itself, they can be proved
together by the following:
open FIBO-STREAM + G-STREAM .
vars M N : Nat .
cred ( tail tail fib(M, N) == tail odd g(N, M) )
( £fib(M, N) == even g(N, M) )

close

5 Conclusions

Many theoretical and practical innovations have developed with the OBJ
family of languages, some of which are listed below. We feel that this
strongly supports the view that theory and practice should be pursued to-
gether, since each raises new ideas for the other, and each can test and
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support the validity of the other. Sometimes we implemented things that
we did not yet have theory for, sometimes we puzzled over how to im-
plement an existing theory, and often we struggled to extend both theory
and implementation to cover some phenomenon of practical interest. Cer-
tainly both higher order parameterization and mutual coinduction fall into
this area. Some other innovations, most of which have already been dis-
cussed somewhere in this paper, are: overloaded many sorted algebra, order
sorted algebra, retracts, membership equational logic (in Maude [Meseguer,
1997]), hidden algebra, circular coinductive rewriting, parameterized pro-
gramming, higher order parameterized modules, institutions, efficient term
rewriting modulo equations (in Maude [Clavel et al., 1996]), Grothendieck
institutions (for the semantics of CafeOBJ [Diaconescu, 2002]), initial alge-
bra (and model) semantics, e.g. for constraint logic programming [Goguen
and Meseguer, 1986], and reflective equational programming (in Maude [Du-
ran and Meseguer, 2003]). Many of these seem underexploited, and since
the intellectual mines of OBJ are probably not yet exhausted, we may per-
haps expect to see more interesting or unusual logical contributions from
this area of research in the future.
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