

Adequacy of Bounded Exhaustive Testing and Incomplete Oracles for Elusive Bug

Detection

William E. Howden

CSE, UCSD, La Jolla, CA, 92093

Abstract

Elusive bugs (EB) are not reliably discovered using

standard methods such as black and white box testing.

Bounded exhaustive testing (BET) is a promising

approach for their detection. A generic EB fault model is

introduced which is used to consider the adequacy of BET

for EB detection. BET requires the use of an automatic

oracle. Situations in which automation may only be

practical with the use of an incomplete oracle are

considered. Failure models are used to evaluate

effectiveness of incomplete oracles.

1. Introduction

 An elusive bug is one that depends on a combination

of conditions that may occur infrequently, and are

unlikely to have been tested for. The combination of

conditions may not have any corresponding application

functionality. In BET, a "bounded" version of the system

is tested over all inputs. This paper explores the use of a

Bounded Exhaustive testing approach to elusive bug

detection.

 In order to carry out a set of BET tests, it is necessary

to have an automated oracle that can evaluate the validity

of the behavior or output for a test. A "complete" oracle

can determine if an output is valid. An "incomplete

oracle" is weaker. It may only be able to evaluate if the

output is valid under certain circumstances, or if it posses

certain necessary properties. It may be necessary because

it is not possible to construct a complete automated

oracle. The effectiveness of incomplete oracles is

analyzed using failure models.

2. Sample programs

 In the following discussion three sample bugs are

used, one from each of three sample programs. The first

two are data processing programs. The third is a simple

interactive program. All of the bugs were naturally
occurring.

BET test generation tools and incomplete automated

oracles were built that were applied to each of the

examples. This not only served as proof of concept, but

helped to clarify a number of foundational issues.

2.1. General ledger accounting

 The first data processing program reads in a file of

records that are sorted by account number, causing them

to appear in account groups. Records can be financial or

non-financial. If financial, they have a transaction

amount. For each group the program prepares a final

financial amounts total, which it outputs. For each non-

financial record, the program outputs a report. The

program fails to check for a change in account numbers

when the last record in an account group is a non-

financial record. Consequently, it adds the financial

record total for that group (if the group has at least one

financial record) on to the total for the next group.

2.2. Field validation

 This program reads in a file of transaction records

having 6 fields, which the program is supposed to check

for validity (correct range, type, etc.). If a record has one

or more bad fields, this information is supposed to be

reported in a printed report. The report for a record has a

header line for the record, plus one line for each invalid

field. The report lines for a record cannot be split

between pages, each having 50 lines. Under certain

circumstances, the program fails to properly ensure that

the output lines for a group are not split between pages.

2.3. Dating System

 This was a simple dating system program that was

written to experiment with different testing methods. The

user starts the system, resulting in a start/end screen. If

start is chosen a logon screen appears, and the user types

in a name in a logon box. If a special name is typed, the

user is assumed to be an administrator. This results in a

screen that allows a choice between adding a new

member or deleting an old one. After performing such an

action, a result message is printed and the system returns

to the start/end screen. If the user is not the administrator

and is a member of the system (i.e. has an entry in the

data base) an options screen appears that allows a choice

between asking for a date or (re)setting personal data. If a

date is requested, the user is presented with a form for

entering preferences. The system then tries to find a

match, and prints an appropriate reply message. After

looking for a date or setting user data, the system returns

to the start/end screen. Choosing end terminates a

session.

3. Elusive bug fault models and the

effectiveness of BET

3.1. Elusive bugs

 As described in the introduction, an elusive bug is

associated with an unusual or unexpected combination of

"conditions". This basic fault model is elaborated by

further characterizing such bugs as having the following

properties:

i) Characteristic combinations. The bug is

associated with a characteristic set of combinations of

conditions.

ii) Invariant invalidity. An elusive bug results in

invalid behavior whenever a combination in its

characteristic set of combinations occurs.

iii) Condition relevance. The individual conditions

in the combinations that cause failures are oriented

towards program specifications rather than

implementation, and are relevant to the discussion of

a program's expected behavior.

iv) Coincidental combinations. The combinations

that cause a program failure may or may not have any

expected functional relevance.

 Conditions may be associated directly with properties

and relationships in input data, or with states that may

arise during application execution. In all cases they are

specification oriented in the sense that they are associated

with knowledge of how the program is supposed to

behave rather than how it is designed or implemented.

The use of conditions as the basis of testing is a very old

idea, appearing in, for example, [1] and [2].

 In the sections below, conditions are identified for

two classes of applications: stream based data processing

programs and interactive data base systems.

3.2. BET

 The classical approach to testing for condition

combinations is to consider all "functionally meaningful"

combinations [e.g. 1]. Techniques for systematically

considering combinations include cause-effect graphs,

introduced in [3]. Later work includes ways for indirectly

describing combinations and tools for generating them,

such as [4].

 In the case of elusive bugs, we assume that the

conditions are functionally meaningful, and hence

discoverable, but that the combination may not be.

Consequently, techniques like cause-effect graphing are

not directly useful. Alternatively, Bounded Exhaustive

Testing considers all combinations of inputs for a

"bounded version of an application" which will allow

those odd combinations to "emerge" and be tested for.

 The idea that bugs can be reliably detected by

exhaustively testing over a limited version of a program

has occurred in different forms e.g. [5], [6]. Modern

approaches that use BET for class testing are described in

[7] and [8]. The term BET appears to have achieved

common usage starting with [9].

 In the following sections, the effectiveness of BET

for detecting elusive bugs is considered by examining its

use for two classes of programs. The success of BET in

"inducing" the combinations needed to detect elusive bugs

is analyzed, including refinements to the basic method.

4. Stream based data processing

4.1. Typical conditions

 Stream processing programs have one or more input

streams and one or more output streams. Only simple

computations are involved, wherein input data is

combined to produce an item in an output stream. The

items in the stream are normally transactions with one or

more fields. The transactions may occur in groups, which

are either explicitly or implicitly identified in the streams.

Streams may be files, output traces to data bases, or items

sent to a printer.

Possible conditions include:

i) properties of data items in record fields

ii) categories of records

ii) relationships between records or data items

iii) location in a stream such as first or last item

iv) properties of groups of records in a stream

v) relationships between groups in streams

4.2. General ledger accounting example

 In this example, we can identify the following

conditions.

 i) record is financial or non-financial

 ii) account amount is a mathematically special value

 such as zero or one

 iii) record is first or last in the stream

 iv) account number in one record is equal to or less

 than account number in the next

 v) account group has at least one financial

 record, or not

 vi) account group is first or last in the stream.

The EB fault model for this example would include all

combinations of these conditions. The question for BET

is whether it would be effective in generating tests that

would cover this fault model.

 In order to examine the effectiveness of BET, we will

first consider the types of tests we would generate. The

first step is to identify the finite value domains that will

be used for the record entries. One field indicates if the

record is financial or non-financial. Another has the

account number, for which we might choose 3

representative numbers. In the case of a non-financial

record, we can construct a small sample of entries. In the

case of a financial record, we can construct representative

account transaction amounts, including the special zero

value which may result in alternative behavior.

 The second step is to consider the lengths of the

streams. In this case we will consider streams with from

1 to 3 account groups, and account groups with from 1 to

3 records. This will allow the generation of streams with

the following conditions: groups and records will be in or

not be in the special stream locations (first and last).

 The third step is to construct a test generator that will
generate all possible input sequences of the specified

lengths form the finite data domain subsets. This step

will have to incorporate the restriction that input streams

be sorted by account number. Our experiments used the

BET variation of JUnit which was previously developed

and which is described in [10].

 The BET generated data sets will cover all the EB

combinations and is a natural fit. EB condition

combinations that do not occur directly in the BET

generation process will occur indirectly as the BET

combinations are generated. For example, the EB fault

model combination in which a record group with at least

one nonfinancial record occurs as the first element in the

stream will occur when the generation of all combinations

of lower level items is carried out. Other combinations,

and in particular the combination in which an account

group which is not last, has a nonfinancial record as its
last record, and is followed by an account group that ends

with a financial record, will also occur. This combination

is an example of the characteristic combinations set for

the "failure to check for account break for nonfinancial

records" defect, included in the description of this

example in the introduction.

4.3. Field validation example

 In this example, the following conditions are readily

identified:

i) valid and invalid fields for each field

ii) output for current record will or will not fit on

current output report page.

The second condition is different from the conditions in

the previous example. In that case they are all defined as

input stream properties. In this case the condition relates

input to output stream properties. Alternatively, it is a

property of the intermediate state of the program during

processing. It is, however, still a property that would

occur as part of the specifications.

 The consideration of all combinations of different

records with different combinations of good or bad fields

will give us a complete EB fault model. In order to apply

BET, we need to choose finite data domains for record

fields that cover both good and bad fields and allow both

to occur. We also need to consider the lengths of the

input streams. In the previous example, bounding input

stream length was easy - just choose lengths up to 3. In

this example, BET would not reveal the defect if we

followed this simple bounding technique, and we have to

introduce a modification to BET that allows "state

initialization".

 The size of a report page is 50 lines. In order to test

over the combinations that cause page ejects, we would

have to have all possible input streams up to 50 or 60

records which would be too many, even for automated

testing. An alternative is to do the following:

i) identify the values of an application abstract state
variable that will cause the condition to occur

ii) construct initial streams for each of these values

iii) combine all inputs with all initializing streams.

In this case, we need to consider streams at the end of

which the current output page has from 45 to 50 lines.

This will cover both the page turning condition and non-

page turning condition. We then combine these partial

input streams with an input record with all possible

combinations of valid and invalid conditions for its field

values.

 BET generated test data, with the state initialization

modification, will cover the EB fault model for this

application and will include tests that cause the report

formatting problem to occur.

5. Interactive applications and the Dating

System example

 In this kind of application the user enters data on a

screen, presses some kind of Enter button which causes

processing to occur, resulting in new screen. The user

will start a session, perform a sequence of interactions and

then terminate the session. Typically, the associated

program has a data base and performs relatively simple

computing, often limited to comparisons. The Dating

System example described in the introduction is a very

simple instance of this kind of program.

 Typical conditions for this kind of application

involve properties of data entered by the user, or

relationships between data and the data base.

 In the dating system example the following

conditions are readily identified:

i) a member(x) is or is not in the system

ii) a member(x) is the administrator

iii) input data item left blank or not blank

iv) date preferences p have/do not have a match in

the data base db

v) first and last interactions in a session.

The application of BET involves the generation of

possible interaction sequences up to a predetermined

length. For each possible input, a finite set of possibilities

would be chosen. If we assume that the data base is

initially empty, then the construction of all possibilities up

to the chosen path lengths that allow all screens to occur

will include all possible combinations of the first iv) of

the conditions. Condition v) will be covered if sequences

of 1-3 sessions are considered.

 The implementation of BET for testing interactive

systems can follow a standard model testing approach,

with the additional feature that finite domains are defined

for the inputs that can occur in each screen/state. One of

the major hurdles is how to determine which transition(s)

can be followed when there are multiple transitions from

a state to the states after it. For simple examples, the

transition may correspond to an exact input entered in the
previous state, and the system is "Markovian" in the sense

that earlier inputs do not affect the choice of a transition.

For others, especially those for which the model is

abstract, transition conditions or "guards" are needed to

disambiguate model non-determinism.

 BET testing of interactive systems appears to be

effective in that it will cover the EB fault models. The

elusive defect described for the DS example will be

revealed by any tests in which no member is successfully

deleted before an attempt is made to delete a member not

currently in the data base.

6. Elusive Bug Fault Models and Incomplete

Oracles

 The BET approach results in the generation of large

numbers of tests, requiring the use of an automated

oracle. This may result in the use of incomplete oracles,

which do not always give a definitive answer in regards to

the validity or invalidity of a program's output. In this

section the effectiveness of incomplete oracles is

considered for BET generated tests. First, a general

framework for the consideration of incomplete oracles is

presented.

6.1. Incomplete Oracles

 The concept of a test oracle appears to have been

first introduced in [11]. Additional articles on oracles

considered the general problem of their implementation,

such as [12], where it was suggested that it may be

necessary to construct a second test version of a program

in order to validate the behavior of the production version.

Other papers discussed the idea that oracles may not be

exact, such as in Taos system [13], where an oracle may

be restricted to checking if output is in range. Perhaps the

least demanding kind of automated oracle occurs in

"robustness testing" [e.g. 14] in which a program is run

for large numbers of randomly generated tests, and the

program is monitored to see if it crashes or returns an

unexpected exception. Both the range check and

robustness testing examples use incomplete oracles.

 Two general classes of incomplete oracles will be

discussed: necessity and sufficiency. A necessity oracle

is able to determine if output or behavior has a necessary

property for validity. A sufficiency oracle is able to

determine if output or behavior has a sufficient property

for validity. A necessity oracle is incomplete because in

the case where a necessity property is satisfied, the

validity of the output is unknown or undefined. It is only

in the case where it is not satisfied that its validity is

known, where it is invalid. A sufficiency oracle is

incomplete because in the case where it is not satisfied

validity is unknown or undefined.

 An oracle Q(X.Y), which determines if output Y is
valid for input X, can be thought of as being based on a

relationship Qr(X,Y) which has the following properties.

In the case of a necessity oracle, the oracle returns invalid

if and only if the relationship evaluates to False. In the

case of a sufficiency oracle, it returns Valid if and only if

the oracle returns True. In other cases the oracle returns

"undefined".

 We define one oracle to be more general than another

if it is defined for a broader range of inputs, (i.e. if the set

of inputs over which it is defined contains the set of

inputs for which the second oracle is defined). New,

more general necessity oracles can be created by taking

the intersection of the base relationships for two existing

oracles. New, more general, sufficiency oracles can be

created by taking the union of the base relationships of

two existing sufficiency oracles. It is also possible to

obtain increased generality by combining sufficiency and
necessity oracles. For example, we may use a sufficiency

oracle for the easy cases, and a necessity oracle for the

rest.

 Robustness testing is used to refer to automated

testing efforts in which application behavior evaluation is

limited to the detection of crashes and unexpected

exceptions. We considered this to be a kind of lower

bound for automated necessity oracles. Any oracle which

is more general than a robustness oracle is, per se,

potentially more effective, motivating our general study

of incomplete automated oracles.

 As in the discussion of BET adequacy for elusive bug

test generation, two general classes of programs are

considered, stream based data processing and interactive

programs. Failure models are used to analyze the

effectiveness of associated incomplete oracles.

7. Stream-based data processing

 As described above, programs like these have input

and output streams. The computations, in which items in

the input stream are transformed into items in the output

stream, are often fairly simple. Two general classes of

failures are identified: item function failures and structure

failures. An item function failure results in an incorrectly

computed item in an output stream. A structure failure

corresponds to failing to produce a necessary item,

duplicating an item, or misordering items in an output

stream.

 An automated incomplete oracle for a stream based

application might have both a sufficiency and a necessity

aspect. A hand computed set of results, acting as an

incomplete, sufficiency oracle, could be used to check the

item function computations. A set of consistency

invariants, describing structural relationships between

inputs and outputs, might implement a structural necessity

oracle. The structural oracle could rely on input and

output metadata. An automated test generator could
generate properties of input test streams, such as stream

length, along with the test streams. Output properties

might be generated along with the output. A structural

necessity oracle could then be based on the meta data

rather than on the actual test input and output.

7.1. General Ledger Accounting

 The defect given for this example results in several
structural output failures. It fails to include a financial

output report for one or more accounts for some classes of

input. It also fails to generate a non-financial report for

some of the inputs. Suppose that x is the number of

nonfinancial records that appear in the input stream. This

could be determined by the test generator as meta-data.

Let y be the number of records in the non-financial items

output report. This could be determined by the oracle or

from output metadata produced by the program. Then

x=y is a structural necessity oracle. A variety of other

necessity conditions can also be established.

 For the class of structural failures associated with this

example, a straightforward use of a structural necessity

oracle will be adequate. The testing of the remaining

functionality of the program - computing the correct

entries for items in the output streams - could be done

with more localized black box testing.

7.2. Field validation

 This example is also a stream processing program.

The above example involved missing or duplicate stream

output steps. In this example, there are different output

steps can occur for the same output stream. Possible

modes of failed behavior include incorrect interleaving of

output steps. In particular, suppose that we consider the

output actions in which a field error report line, a record

field errors header, and a page boundary output step are

performed. If these are out of order, a page straddling

field report failure may occur.

 The same structural necessity oracles that were used

in the general ledger accounting example could be used

here. In addition we could add a necessity oracle for

detecting output report formatting violations. Suppose

that the following metadata is either generated by the

program, or constructed from the output stream. The

metadata consists of a sequence of tokens fl, hl, or pb,

standing for field line, header line and page boundary.

The oracle looks for the necessity relationship between

successive items: not(hl followed by fl). If this is violated

the program is invalid.

 For both this and the above general ledger accounting

example, incomplete structural necessity oracles are

adequate for the detection of stream based output

structure failures. In addition, the remaining functionality

that needs to be tested is amenable to standard functional

testing methods.

8. Interactive systems

 In the approach used for this class of programs, a

system specification state model is used both for (BET)

test generation and for (incomplete) automated oracle

implementation.

8.1. State models and incomplete oracles

 In general, state models are often abstract, and only

certain unique identifying properties of the states/screens

are given. We expect all models to be complete in the

sense that any (legal) state that the program can get into

must match one of the state descriptions in the model.

Guard conditions may appear on the transitions when

there are multiple transitions from an abstract state S.

Suppose that a partial program execution corresponds to a

partial path P from the initial state up to the state S in the

state model. The correct transition from S is a function of

what the state of the program should be at S, if the path P

had been followed, and of the inputs entered at S.

 A test runner that is based on a state model traverses

paths through the model, generating different possible

inputs in each state. When the test runner is in a state S,

and there are multiple transitions from S to the next states,

then the following is required of the model:

i) if the program is in a state that matches the

description for S, then the set of states that follow S

in the model should contain the (description of) the

next state to which the program should transition.

ii) if the program is in a state S, and the transition

guard on a transition to a next state V evaluates to

True, then the correct next program state must match

the model state description V.

These two properties indicate the way in which a model is

used as an oracle. Condition i) is a necessity condition. If

the program under test transitions to a state other than one

of the next states in the model, then the behavior is

invalid. Condition ii) is a sufficiency property. If a guard

is satisfied, and the next state of the program does not

match the next state in the model associated with that

guard, then the program behavior is invalid. If condition

ii) is satisfied, and the next state of the application

matches the next state in the state model, then the

behavior at that point is valid.

 The use of this kind of state model for test generation

and oracle validation requires a computational mechanism

for computing the guard transitions. One approach that

has been suggested is to use a parallel gold standard

program that is run along with the application under test.

This is the approach used by [6]. This approach has the

obvious potential problems: the cost of constructing

another program and the possibility that the oracle version

of the program will have the same defects as the original

program under test.
 When the above approaches are not practical, it may

be necessary to consider incomplete guards (oracles). This

means that the program could be in a state that matches

model state S, and none of the guards on the model

transitions evaluate to True. Provided that the next state

necessity condition is satisfied (i.e. the next state of the

program matches the description of one of the next states

in the model) then no violation has been detected. In

situation such as this, testing and oracle evaluation can

continue with the next state, but a defect may have been

undetected.

 As in the general discussion of incomplete oracles

given above, we can increase the generality of our state

based oracles by constructing more precise necessity

conditions, or more general sufficiency conditions.

8.2. Dating system

 There are many kinds of conditions and condition

combinations in this example that are fault model

relevant, such as deleting a non-existent member, or

restarting the system after adding a new member without

setting the member's data. All of these will arise during a

BET oriented traversal of a test generation state model.

BET will also allow the consideration of combinations in

which one kind of condition is combined with the absence
of another kind.

 Experiments were carried out with several kinds of

model based automated oracles for the dating system

example. One of these involved the use of path pattern

recognition. A rationale for investigating this approach is

that when it is used in conjunction with BET, it is only

necessary to consider patterns in paths of limited lengths,

so that pattern complexity will be limited. Suppose the

user is attempting to delete a non existent member x. The

transition from S to the model state V that reports the

there is no such member x could have any of the

following sufficiency guards. All are related to the

pattern of user actions on paths through the model from

the initial state to S.

 i) there are no add() states

 ii) there are no add(x) states/screens, where x is a

 possible member name

 iii) every add(x) state is followed by a delete(x) state

 without an intervening add(x)

 iv) every add(x) state that is not followed by another

 add(x) state without an intervening delete(x) state is

 followed by a delete(x) state.

In the case of oracle guard i), no value is defined for the

user who is being added, and the computation is quite

easy, but execution paths for which it provides an answer

are very limited. Guard ii) is more general in the sense

that it will evaluate to True (i.e. will not evaluate to

undefined) for a broader class of situations, which will

make it possible to evaluate the validity of a broader

range of behavior. The other guards provide even more
general oracle capabilities.

 For the sample bug that was given in the description

of the Dating System, a very simple sufficiency oracle is

adequate. If every test starts with an empty data base then

there will be a path to the state S along which a transition

to an incorrect state V occurs instead of to a state W for

which sufficiency oracle guard ii) is satisfied, revealing

the defect. Actually, in this particular case, the bug would

also have been caught by the necessity oracle associated

with the set of next states after S in the model, because

the program transitions to a state V that is not in that set.

9. Conclusions and Future Work

 The goal in this research was to consider the

following two questions. The first was "is BET adequate

for the testing of elusive bugs, and what are some useful

guidelines for its application?" This question was

approached by constructing a generic EB fault model for

elusive bugs. A more specific fault model for an

application is constructed by considering its conditions

and their combinations. The more specific model can be

used to evaluate the potential effectiveness of BET and to

adjust it for the application context. For example, in the

case of the field validation program, it was necessary to

include a context setting capability in the BET test

generator.

 The second question was "can adequate automated

oracles be built for validating BET generated program

behavior?" For a particular application, the idea was to

construct the most general automated, possibly

incomplete, oracle that could be devised, and to

characterize its effectiveness using a failure model. A

general framework, based on necessity and sufficiency

oracles, was introduced that can be used to systematically

describe and analyze the generality of incomplete oracles.

 With respect to the first question, the conclusion was

positive. The results of the analysis indicated that BET,

adjusted to the application context, could be an effective

testing method for elusive bugs. In addition, fault models

can be used to both characterize BET efficiency and to

tailor BET to a particular application context.

 With respect to the second question, the conclusion

was positive but not as definitive. Two kinds of programs

were analyzed: simple stream processing programs and an

interactive system. For stream based data processing

programs, the conclusion is positive. The consideration

of failure models allowed us to characterize the

effectiveness of the incomplete oracles that were used. In

this case they were more powerful than simple robustness

necessity oracles which would not have been general

enough to detect the sample defects.

 For the second kind of program, interactive systems

with model based oracles, several model-based failure

modes were described. The analysis that was presented
indicated that transition guard sufficiency oracles were

adequate for the class of failures seen in the example, but

that simple necessity oracles that were able to determine

whether or not the result of a transition was in a set of

legal possible resulting states were also adequate. In

other words, the extra complication of sufficiency guards

was not needed, at least in this case, because the faults

resulted in failures that generated invalid next states.

 The research literature on testing contains many

examples of different methods which are described along

with statistics on their effectiveness in the detection of

defects. The work described here differs from this in that

it attempts to characterize the kinds of defects for which

an approach will be effective. It does this first in terms of

a specific fault model, derived from the generic EB

model, and secondly in terms of an oracle failure model.

 Planned future research involves the application of
the approach described here to a more extensive set of

examples. This could take the form of both more specific

EB fault models, and the identification of different kinds

of oracle related failure models. In the case of model-

based testing, for example, it may be possible to

characterize various graph based failure modes that

correspond to the situations in which simple classes of

incomplete sufficiency guards are adequate for their

detection.

10. References

[1] Myers, Glenford, The Art of Software Testing, Wiley,

1979/2004.

[2] Richardson, D.J., Clarke, L.A., A partition analysis method

to increase program reliability, Proceedings ICSE, IEEE, 1981.

[3] Elmendorf, W. R., "Cause-Effect Graphs in Functional

Testing", TR_00.2487, IBM, Poughkeepsie, N.Y., Nov. 1973.

[4] Ostrand, T.J., Blacer, M.J., The category-partition method

for specifying and generating functional tests. CACM, 31-6,

June, 1988.

[5] Howden, W.E., Functional Program Testing and Analysis,

McGrawHill, 1987.

[6] Memon A., Banerjee I., A. Ngarajan, A., What Test

Oracles Should I use for Effective GUI Testing? IEEE TSE, 31-

10, Oct 2005.

[7] Cheon, Y., Leavens, G.. A Simple and Practical Approach

to Unit Testing: The JML and the JUnit Way, In ECOOP 2002

-- Object-Oriented Programming, 16th European Conference,

Malaga, Spain, June 2002, Proceedings. Volume 2374 of

Lecture Notes in Computer Science, Springer-Verlag, 2002.

[8] Boyapati, C., Khurshid, S., Marinov, D., Korat: Automated

Testing Based on Java Predicates, Procs. ISSTA, IEEE, 2002.

[9] Sullivan, K, J., Yang, J., Coppit, D., Khurshid, S., Jackson,
D., Software Assurance by Bounded Exhaustive Testing, Proc.

ISSTA, 2004.

[10] Howden, W.E., Rhyne, C., Test Frameworks for Elusive

Bug Testing, Proceedings ICSOFT 07, 2007.

[11] Howden, W.E. Introduction to the Theory of Testing, in

Software Testing and Validation Techniques, E. Miller and

William E. Howden, IEEE, 1978.

[12] Weyuker, E.J. On testing non-testable programs,

Computing Journal, 25-4, 1982.

[13] Richardson, D.J., TAOS: Testing with analysis and oracle

support. ISSTA: Proceedings of the International

Symposium on Software Testing and Analysis, ACM, 1994.

[14] Miller, B., Forrester J.E., and Miller, B.P., An empirical

study of the robustness of Windows NT applications using

random testing, Proc. 4th Usenix Windows System

Symposium, 2000.

