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Abstract 
 

Elusive bugs (EB) are not reliably discovered using 

standard methods such as black and white box testing.  

Bounded exhaustive testing (BET) is a promising 

approach for their detection.  A generic EB fault model is 

introduced which is used to consider the adequacy of BET 

for EB detection.  BET requires the use of an automatic 

oracle.  Situations in which automation may only be 

practical with the use of an incomplete oracle are 

considered.  Failure models are used to evaluate 

effectiveness of incomplete oracles. 

 

1. Introduction 

 
 An elusive bug is one that depends on a combination 

of conditions that may occur infrequently, and are 

unlikely to have been tested for.  The combination of 

conditions may not have any corresponding application 

functionality.  In BET, a "bounded" version of the system 

is tested over all inputs.  This paper explores the use of a 

Bounded Exhaustive testing approach to elusive bug 

detection. 

 In order to carry out a set of BET tests, it is necessary 

to have an automated oracle that can evaluate the validity 

of the behavior or output for a test.  A "complete" oracle 

can determine if an output is valid.  An "incomplete 

oracle" is weaker.  It may only be able to evaluate if the 

output is valid under certain circumstances, or if it posses 

certain necessary properties.  It may be necessary because 

it is not possible to construct a complete automated 

oracle.  The effectiveness of incomplete oracles is 

analyzed using failure models. 

  

2. Sample programs 

 
 In the following discussion three sample bugs are 

used, one from each of three sample programs. The first 

two are data processing programs.  The third is a simple 

interactive program.  All of the bugs were naturally 
occurring. 

 

BET test generation tools and incomplete automated 

oracles were built that were applied to each of the 

examples.   This not only served as proof of concept, but 

helped to clarify a number of foundational issues. 

2.1. General ledger accounting 

 

 The first data processing program reads in a file of 

records that are sorted by account number, causing them 

to appear in account groups.  Records can be financial or 

non-financial.  If financial, they have a transaction 

amount.  For each group the program prepares a final 

financial amounts total, which it outputs.  For each non-

financial record, the program outputs a report.  The 

program fails to check for a change in account numbers 

when the last record in an account group is a non-

financial record.  Consequently, it adds the financial 

record total for that group (if the group has at least one 

financial record) on to the total for the next group. 

 

2.2. Field validation  

 
 This program reads in a file of transaction records 

having 6 fields, which the program is supposed to check 

for validity (correct range, type, etc.).  If a record has one 

or more bad fields, this information is supposed to be 

reported in a printed report.  The report for a record has a 

header line for the record, plus one line for each invalid 

field.  The report lines for a record cannot be split 

between pages, each having 50 lines.  Under certain 

circumstances, the program fails to properly ensure that 

the output lines for a group are not split between pages. 

 

2.3. Dating System 

 
  This was a simple dating system program that was 

written to experiment with different testing methods.  The 

user starts the system, resulting in a start/end screen.  If 

start is chosen a logon screen appears, and the user types 

in a name in a logon box.  If a special name is typed, the 

user is assumed to be an administrator.  This results in a 

screen that allows a choice between adding a new 

member or deleting an old one.  After performing such an 

action, a result message is printed and the system returns 

to the start/end screen.  If the user is not the administrator 

and is a member of the system (i.e. has an entry in the 

data base) an options screen appears that allows a choice 

between asking for a date or (re)setting personal data.  If a 

date is requested, the user is presented with a form for 

entering preferences.  The system then tries to find a 

match, and prints an appropriate reply message.  After 



  

looking for a date or setting user data, the system returns 

to the start/end screen.  Choosing end terminates a 

session. 

   

3. Elusive bug fault models and the 

effectiveness of BET 

 
3.1. Elusive bugs 
 

 As described in the introduction, an elusive bug is 

associated with an unusual or unexpected combination of 

"conditions".  This basic fault model is elaborated by 

further characterizing such bugs as having the following 

properties: 

i) Characteristic combinations.  The bug is 

associated with a characteristic set of combinations of 

conditions.   

ii) Invariant invalidity.  An elusive bug results in 

invalid behavior whenever a combination in its 

characteristic set of combinations occurs. 

iii) Condition relevance.  The individual conditions 

in the combinations that cause failures are oriented 

towards program specifications rather than 

implementation, and are relevant to the discussion of 

a program's expected behavior. 

iv) Coincidental combinations.  The combinations 

that cause a program failure may or may not have any 

expected functional relevance.   

 Conditions may be associated directly with properties 

and relationships in input data, or with states that may 

arise during application execution.  In all cases they are 

specification oriented in the sense that they are associated 

with knowledge of how the program is supposed to 

behave rather than how it is designed or implemented.  

The use of conditions as the basis of testing is a very old 

idea, appearing in, for example, [1] and [2].   

 In the sections below, conditions are identified for 

two classes of applications: stream based data processing 

programs and interactive data base systems.   

 

3.2. BET 

 

 The classical approach to testing for condition 

combinations is to consider all "functionally meaningful" 

combinations [e.g. 1].  Techniques for systematically 

considering combinations include cause-effect graphs, 

introduced in [3].  Later work includes ways for indirectly 

describing combinations and tools for generating them, 

such as [4].   

 In the case of elusive bugs, we assume that the 

conditions are functionally meaningful, and hence 

discoverable, but that the combination may not be.  

Consequently, techniques like cause-effect graphing are 

not directly useful.  Alternatively, Bounded Exhaustive 

Testing considers all combinations of inputs for a 

"bounded version of an application" which will allow 

those odd combinations to "emerge" and be tested for.   

 The idea that bugs can be reliably detected by 

exhaustively testing over a limited version of a program 

has occurred in different forms e.g. [5], [6].  Modern 

approaches that use BET for class testing are described in 

[7] and [8]. The term BET appears to have achieved 

common usage starting with [9]. 

 In the following sections, the effectiveness of BET 

for detecting elusive bugs is considered by examining its 

use for two classes of programs.  The success of BET in 

"inducing" the combinations needed to detect elusive bugs 

is analyzed, including refinements to the basic method. 

 

4. Stream based data processing 
 

4.1. Typical conditions 
 

 Stream processing programs have one or more input 

streams and one or more output streams.  Only simple 

computations are involved, wherein input data is 

combined to produce an item in an output stream.  The 

items in the stream are normally transactions with one or 

more fields.  The transactions may occur in groups, which 

are either explicitly or implicitly identified in the streams.  

Streams may be files, output traces to data bases, or items 

sent to a printer. 

Possible conditions include: 

i) properties of data items in record fields 

ii) categories of records 

ii) relationships between records or data items 

iii) location in a stream such as first or last item 

iv) properties of groups of records in a stream 

v) relationships between groups in streams 

 

4.2.  General ledger accounting example 
 

 In this example, we can identify the following 

conditions. 

 i) record is financial or non-financial 

 ii) account amount is a mathematically special value 

 such as zero or one 

 iii) record is first or last in the stream 

 iv) account number in one record is equal to or less 

 than account number in the next 

 v) account group has at least one financial 

 record, or not 

 vi) account group is first or last in the  stream. 

The EB fault model for this example would include all 

combinations of these conditions.  The question for BET 

is whether it would be effective in generating tests that 

would cover this fault model. 

 In order to examine the effectiveness of BET, we will 

first consider the types of tests we would generate.  The 

first step is to identify the finite value domains that will 



  

be used for the record entries.  One field indicates if the 

record is financial or non-financial.  Another has the 

account number, for which we might choose 3 

representative numbers.  In the case of a non-financial 

record, we can construct a small sample of entries.  In the 

case of a financial record, we can construct representative 

account transaction amounts, including the special zero 

value which may result in alternative behavior. 

 The second step is to consider the lengths of the 

streams.  In this case we will consider streams with from 

1 to 3 account groups, and account groups with from 1 to 

3 records.  This will allow the generation of streams with 

the following conditions: groups and records will be in or 

not be in the special stream locations (first and last). 

 The third step is to construct a test generator that will 
generate all possible input sequences of the specified 

lengths form the finite data domain subsets.   This step 

will have to incorporate the restriction that input streams 

be sorted by account number.  Our experiments used the 

BET variation of JUnit which was previously developed 

and which is described in [10]. 

 The BET generated data sets will cover all the EB 

combinations and is a natural fit.  EB condition 

combinations that do not occur directly in the BET 

generation process will occur indirectly as the BET 

combinations are generated.  For example, the EB fault 

model combination in which a record group with at least 

one nonfinancial record occurs as the first element in the 

stream will occur when the generation of all combinations 

of lower level items is carried out.  Other combinations, 

and in particular the combination in which an account 

group which is not last, has a nonfinancial record as its 
last record, and is followed by an account group that ends 

with a financial record, will also occur.  This combination 

is an example of the characteristic combinations set for 

the "failure to check for account break for nonfinancial 

records" defect, included in the description of this 

example in the introduction.  

 

4.3.  Field validation example 
 
 In this example, the following conditions are readily 

identified: 

i) valid and invalid fields for each field 

ii) output for current record will or will not fit on 

current output report page. 

The second condition is different from the conditions in 

the previous example.  In that case they are all defined as 

input stream properties.  In this case the condition relates 

input to output stream properties.  Alternatively, it is a 

property of the intermediate state of the program during 

processing.  It is, however, still a property that would 

occur as part of the specifications. 

 The consideration of all combinations of different 

records with different combinations of good or bad fields 

will give us a complete EB fault model.  In order to apply 

BET, we need to choose finite data domains for record 

fields that cover both good and bad fields and allow both 

to occur.  We also need to consider the lengths of the 

input streams.  In the previous example, bounding input 

stream length was easy - just choose lengths up to 3.  In 

this example, BET would not reveal the defect if we 

followed this simple bounding technique, and we have to 

introduce a modification to BET that allows "state 

initialization". 

 The size of a report page is 50 lines.  In order to test 

over the combinations that cause page ejects, we would 

have to have all possible input streams up to 50 or 60 

records which would be too many, even for automated 

testing.  An alternative is to do the following: 

i) identify the values of an application abstract state 
variable that will cause the condition to occur 

ii) construct initial streams for each of these values 

iii) combine all inputs with all initializing streams. 

In this case, we need to consider streams at the end of 

which the current output page has from 45 to 50 lines.  

This will cover both the page turning condition and non-

page turning condition.  We then combine these partial 

input streams with an input record with all possible 

combinations of valid and invalid conditions for its field 

values. 

 BET generated test data, with the state initialization 

modification, will cover the EB fault model for this 

application and will include tests that cause the report 

formatting problem to occur. 

 

5.  Interactive applications and the Dating 

System example 
 

 In this kind of application the user enters data on a 

screen, presses some kind of Enter button which causes 

processing to occur, resulting in new screen.  The user 

will start a session, perform a sequence of interactions and 

then terminate the session.  Typically, the associated 

program has a data base and performs relatively simple 

computing, often limited to comparisons.  The Dating 

System example described in the introduction is a very 

simple instance of this kind of program. 

 Typical conditions for this kind of application 

involve properties of data entered by the user, or 

relationships between data and the data base. 

 In the dating system example the following 

conditions are readily identified: 

i) a member(x) is or is not in the system 

ii) a member(x) is the administrator 

iii) input data item left blank or not blank 

iv) date preferences p  have/do not have a match in 

the data base db 

v) first and last interactions in a session. 

The application of BET involves the generation of 

possible interaction sequences up to a predetermined 



  

length.  For each possible input, a finite set of possibilities 

would be chosen.  If we assume that the data base is 

initially empty, then the construction of all possibilities up 

to the chosen path lengths that allow all screens to occur 

will include all possible combinations of the first iv) of 

the conditions.  Condition v) will be covered if sequences 

of 1-3 sessions are considered. 

 The implementation of BET for testing interactive 

systems can follow a standard model testing approach, 

with the additional feature that finite domains are defined 

for the inputs that can occur in each screen/state.  One of 

the major hurdles is how to determine which transition(s) 

can be followed when there are multiple transitions from 

a state to the states after it.  For simple examples, the 

transition may correspond to an exact input entered in the 
previous state, and the system is "Markovian" in the sense 

that earlier inputs do not affect the choice of a transition.  

For others, especially those for which the model is 

abstract, transition conditions or "guards" are needed to 

disambiguate model non-determinism.  

 BET testing of interactive systems appears to be 

effective in that it will cover the EB fault models. The 

elusive defect described for the DS example will be 

revealed by any tests in which no member is successfully 

deleted before an attempt is made to delete a member not 

currently in the data base. 

 

6. Elusive Bug Fault Models and Incomplete 

Oracles 

 
 The BET approach results in the generation of large 

numbers of tests, requiring the use of an automated 

oracle.  This may result in the use of incomplete oracles, 

which do not always give a definitive answer in regards to 

the validity or invalidity of a program's output.  In this 

section the effectiveness of incomplete oracles is 

considered for BET generated tests.  First, a general 

framework for the consideration of incomplete oracles is 

presented.   

 

6.1. Incomplete Oracles 
 

 The concept of a test oracle appears to have been 

first introduced in [11].  Additional articles on oracles 

considered the general problem of their implementation, 

such as [12], where it was suggested that it may be 

necessary to construct a second test version of a program 

in order to validate the behavior of the production version.  

Other papers discussed the idea that oracles may not be 

exact, such as in Taos system [13], where an oracle may 

be restricted to checking if output is in range.  Perhaps the 

least demanding kind of automated oracle occurs in 

"robustness testing" [e.g. 14] in which a program is run 

for large numbers of randomly generated tests, and the 

program is monitored to see if it crashes or returns an 

unexpected exception.  Both the range check and 

robustness testing examples use incomplete oracles.   

 Two general classes of incomplete oracles will be 

discussed: necessity and sufficiency.  A necessity oracle 

is able to determine if output or behavior has a necessary 

property for validity.  A sufficiency oracle is able to 

determine if output or behavior has a sufficient property 

for validity.  A necessity oracle is incomplete because in 

the case where a necessity property is satisfied, the 

validity of the output is unknown or undefined.  It is only 

in the case where it is not satisfied that its validity is 

known, where it is invalid.  A sufficiency oracle is 

incomplete because in the case where it is not satisfied 

validity is unknown or undefined. 

 An oracle Q(X.Y), which determines if output Y is 
valid for input X, can be thought of as being based on a 

relationship Qr(X,Y) which has the following properties.  

In the case of a necessity oracle, the oracle returns invalid 

if and only if the relationship evaluates to False.  In the 

case of a sufficiency oracle, it returns Valid if and only if 

the oracle returns True.  In other cases the oracle returns 

"undefined". 

 We define one oracle to be more general than another 

if it is defined for a broader range of inputs, (i.e. if the set 

of inputs over which it is defined contains the set of 

inputs for which the second oracle is defined).  New, 

more general necessity oracles can be created by taking 

the intersection of the base relationships for two existing 

oracles.  New, more general, sufficiency oracles can be 

created by taking the union of the base relationships of 

two existing sufficiency oracles.  It is also possible to 

obtain increased generality by combining sufficiency and 
necessity oracles.  For example, we may use a sufficiency 

oracle for the easy cases, and a necessity oracle for the 

rest.    

 Robustness testing is used to refer to automated 

testing efforts in which application behavior evaluation is 

limited to the detection of crashes and unexpected 

exceptions.  We considered this to be a kind of lower 

bound for automated necessity oracles.  Any oracle which 

is more general than a robustness oracle is, per se, 

potentially more effective, motivating our general study 

of incomplete automated oracles. 

 As in the discussion of BET adequacy for elusive bug 

test generation, two general classes of programs are 

considered, stream based data processing and interactive 

programs. Failure models are used to analyze the 

effectiveness of associated incomplete oracles. 

 

7.  Stream-based data processing  

 
 As described above, programs like these have input 

and output streams.  The computations, in which items in 

the input stream are transformed into items in the output 

stream, are often fairly simple.  Two general classes of 



  

failures are identified: item function failures and structure 

failures.  An item function failure results in an incorrectly 

computed item in an output stream.  A structure failure 

corresponds to failing to produce a necessary item, 

duplicating an item, or misordering items in an output 

stream. 

 An automated incomplete oracle for a stream based 

application might have both a sufficiency and a necessity 

aspect.  A hand computed set of results,   acting as an 

incomplete, sufficiency oracle, could be used to check the 

item function computations. A set of consistency 

invariants, describing structural relationships between 

inputs and outputs, might implement a structural necessity 

oracle.  The structural oracle could rely on input and 

output metadata.  An automated test generator could 
generate properties of input test streams, such as stream 

length, along with the test streams.  Output properties 

might be generated along with the output.  A structural 

necessity oracle could then be based on the meta data 

rather than on the actual test input and output. 

 

7.1. General Ledger Accounting  
 

 The defect given for this example results in several 
structural output failures.  It fails to include a financial 

output report for one or more accounts for some classes of 

input.  It also fails to generate a non-financial report for 

some of the inputs. Suppose that x is the number of 

nonfinancial records that appear in the input stream.  This 

could be determined by the test generator as meta-data.  

Let y be the number of records in the non-financial items 

output report.  This could be determined by the oracle or 

from output metadata produced by the program.  Then 

x=y is a structural necessity oracle.  A variety of other 

necessity conditions can also be established. 

 For the class of structural failures associated with this 

example, a straightforward use of a structural necessity 

oracle will be adequate.  The testing of the remaining 

functionality of the program - computing the correct 

entries for items in the output streams - could be done 

with more localized black box testing. 
 

7.2. Field validation  
 

 This example is also a stream processing program.  

The above example involved missing or duplicate stream 

output steps.  In this example, there are different output 

steps can occur for the same output stream. Possible 

modes of failed behavior include incorrect interleaving of 

output steps.  In particular, suppose that we consider the 

output actions in which a field error report line, a record 

field errors header, and a page boundary output step are 

performed.  If these are out of order, a page straddling 

field report failure may occur. 

 The same structural necessity oracles that were used 

in the general ledger accounting example could be used 

here.  In addition we could add a necessity oracle for 

detecting output report formatting violations.  Suppose 

that the following metadata is either generated by the 

program, or constructed from the output stream.  The 

metadata consists of a sequence of tokens fl, hl, or pb, 

standing for field line, header line and page boundary.  

The oracle looks for the necessity relationship between 

successive items: not(hl followed by fl).  If this is violated 

the program is invalid. 

 For both this and the above general ledger accounting 

example, incomplete structural necessity oracles are 

adequate for the detection of stream based output 

structure failures.  In addition, the remaining functionality 

that needs to be tested is amenable to standard functional 

testing methods.   
 

8.  Interactive systems 
 

 In the approach used for this class of programs, a 

system specification state model is used both for (BET) 

test generation and for (incomplete) automated oracle 

implementation.   

 

8.1. State models and incomplete oracles 
 

 In general, state models are often abstract, and only 

certain unique identifying properties of the states/screens 

are given.  We expect all models to be complete in the 

sense that any (legal) state that the program can get into 

must match one of the state descriptions in the model.  

Guard conditions may appear on the transitions when 

there are multiple transitions from an abstract state S.  

Suppose that a partial program execution corresponds to a 

partial path P from the initial state up to the state S in the 

state model.  The correct transition from S is a function of 

what the state of the program should be at S, if the path P 

had been followed, and of the inputs entered at S.   

 A test runner that is based on a state model traverses 

paths through the model, generating different possible 

inputs in each state.  When the test runner is in a state S, 

and there are multiple transitions from S to the next states, 

then the following is required of the model:  

i) if the program is in a state that matches the 

description for S, then the set of states that follow S 

in the model should contain the (description of) the 

next state to which the program should transition. 

ii) if the program is in a state S, and the transition 

guard on a transition to a next state V evaluates to 

True, then the correct next program state must match 

the model state description  V. 

These two properties indicate the way in which a model is 

used as an oracle.  Condition i) is a necessity condition.  If 

the program under test transitions to a state other than one 

of the next states in the model, then the behavior is 

invalid.  Condition ii) is a sufficiency property.  If a guard 

is satisfied, and the next state of the program does not 



  

match the next state in the model associated with that 

guard, then the program behavior is invalid.  If condition 

ii) is satisfied, and the next state of the application 

matches the next state in the state model, then the 

behavior at that point is valid. 

 The use of this kind of state model for test generation 

and oracle validation requires a computational mechanism 

for computing the guard transitions.    One approach that 

has been suggested is to use a parallel gold standard 

program that is run along with the application under test.  

This is the approach used by [6]. This approach has the 

obvious potential problems: the cost of constructing 

another program and the possibility that the oracle version 

of the program will have the same defects as the original 

program under test. 
 When the above approaches are not practical, it may 

be necessary to consider incomplete guards (oracles). This 

means that the program could be in a state that matches 

model state S, and none of the guards on the model 

transitions evaluate to True.  Provided that the next state 

necessity condition is satisfied (i.e. the next state of the 

program matches the description of one of the next states 

in the model) then no violation has been detected.  In 

situation such as this, testing and oracle evaluation can 

continue with the next state, but a defect may have been 

undetected.  

 As in the general discussion of incomplete oracles 

given above, we can increase the generality of our state 

based oracles by constructing more precise necessity 

conditions, or more general sufficiency conditions.   

   

8.2. Dating system  
 

 There are many kinds of conditions and condition 

combinations in this example that are fault model 

relevant, such as deleting a non-existent member, or 

restarting the system after adding a new member without 

setting the member's data.  All of these will arise during a 

BET oriented traversal of a test generation state model.  

BET will also allow the consideration of combinations in 

which one kind of condition is combined with the absence 
of another kind. 

 Experiments were carried out with several kinds of 

model based automated oracles for the dating system 

example.  One of these involved the use of path pattern 

recognition. A rationale for investigating this approach is 

that when it is used in conjunction with BET, it is only 

necessary to consider patterns in paths of limited lengths, 

so that pattern complexity will be limited.  Suppose the 

user is attempting to delete a non existent member x.  The 

transition from S to the model state V that reports the 

there is no such member x could have any of the 

following sufficiency guards.  All are related to the 

pattern of user actions on paths through the model from 

the initial state to S. 

 i) there are no add() states 

 ii)  there are no add(x) states/screens, where x is a 

 possible member name 

 iii) every add(x) state is followed by a delete(x) state 

 without an intervening  add(x) 

 iv) every add(x) state that is not followed by another 

 add(x) state without an intervening delete(x) state is 

 followed by a delete(x) state. 

In the case of oracle guard i), no value is defined for the 

user who is being added, and the computation is quite 

easy, but execution paths for which it provides an answer 

are very limited. Guard ii) is more general in the sense 

that it will evaluate to True (i.e. will not evaluate to 

undefined) for a broader class of situations, which will 

make it possible to evaluate the validity of a broader 

range of behavior.  The other guards provide even more 
general oracle capabilities. 

 For the sample bug that was given in the description 

of the Dating System, a very simple sufficiency oracle is 

adequate.  If every test starts with an empty data base then 

there will be a path to the state S along which a transition 

to an incorrect state V occurs instead of to a state W for 

which sufficiency oracle guard ii) is satisfied, revealing 

the defect.  Actually, in this particular case, the bug would 

also have been caught by the necessity oracle associated 

with the set of next states after S in the model, because 

the program transitions to a state V that is not in that set. 

 

9. Conclusions and Future Work 
 

 The goal in this research was to consider the 

following two questions. The first was "is BET adequate 

for the testing of elusive bugs, and what are some useful 

guidelines for its application?"  This question was 

approached by constructing a generic EB fault model for 

elusive bugs.  A more specific fault model for an 

application is constructed by considering its conditions 

and their combinations.  The more specific model can be 

used to evaluate the potential effectiveness of BET and to 

adjust it for the application context.  For example, in the 

case of the field validation program, it was necessary to 

include a context setting capability in the BET test 

generator.   

 The second question was "can adequate automated 

oracles be built for validating BET generated program 

behavior?"  For a particular application, the idea was to 

construct the most general automated, possibly 

incomplete, oracle that could be devised, and to 

characterize its effectiveness using a failure model.  A 

general framework, based on necessity and sufficiency 

oracles, was introduced that can be used to systematically 

describe and analyze the generality of incomplete oracles. 

 With respect to the first question, the conclusion was 

positive.  The results of the analysis indicated that BET, 

adjusted to the application context, could be an effective 

testing method for elusive bugs.  In addition, fault models 



  

can be used to both characterize BET efficiency and to 

tailor BET to a particular application context. 

 With respect to the second question, the conclusion 

was positive but not as definitive. Two kinds of programs 

were analyzed: simple stream processing programs and an 

interactive system.  For stream based data processing 

programs, the conclusion is positive.  The consideration 

of failure models allowed us to characterize the 

effectiveness of the incomplete oracles that were used.  In 

this case they were more powerful than simple robustness 

necessity oracles which would not have been general 

enough to detect the sample defects.   

 For the second kind of program, interactive systems 

with model based oracles, several model-based failure 

modes were described.  The analysis that was presented 
indicated that transition guard sufficiency oracles were 

adequate for the class of failures seen in the example, but 

that simple necessity oracles that were able to determine 

whether or not the result of a transition was in a set of 

legal possible resulting states were also adequate.  In 

other words, the extra complication of sufficiency guards 

was not needed, at least in this case, because the faults 

resulted in failures that generated invalid next states. 

 The research literature on testing contains many 

examples of different methods which are described along 

with statistics on their effectiveness in the detection of 

defects.  The work described here differs from this in that 

it attempts to characterize the kinds of defects for which 

an approach will be effective.  It does this first in terms of 

a specific fault model, derived from the generic EB 

model, and secondly in terms of an oracle failure model. 

 Planned future research involves the application of 
the approach described here to a more extensive set of 

examples.  This could take the form of both more specific 

EB fault models, and the identification of different kinds 

of oracle related failure models.  In the case of model-

based testing, for example, it may be possible to 

characterize various graph based failure modes that 

correspond to the situations in which simple classes of 

incomplete sufficiency guards are adequate for their 

detection. 
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