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Abstract 

In confidence based reliability measurement we determine 
that we are nt least C confident that the probability of n 
program failing is less than or equal to c1 bound 8. The 
basic results of this approach are reviewed and several 
additional results introduced, including r/w adaptive 
sampling rheorem which shows how confidence can be 
computed when faults are correcred as they appear in the 
resting process. Another result shows how fo carry auf 
testing in parallel. Some of the problems of staristical 
testing are discussed and an nlternn~ive merhod for 
establishing reliability called statistical coverage is 
introduced. At the cmf of making reliability estimres that 
are relnrive fo a fault model, smtisrical coverage 
eliminares rhe need for output validation during reliability 
estimation and allows the incorporation of non-statistical 
resting results into the statistical reliability esrimtion 
process. Sratistical taring and statistical coverage are 
compared, and their relarionrhip wirh ondidoml 
reliability growth modeling approaches is briefly 
discussed. 

1. Introduction 

Software developers are often faced with the need to 
estimate the reliability of a program, and to decide when to 
stop testing. One of the more commonly used methods at 
the earlier stages of development is test coverage. Them 
will typically be a requirement that some percentage of 
program branches be covered on at least one test, say 90%. 
This paper reviews the basic theory that is used for 
statistical testing and intmduces several new results. It 
then describes the application of these methods to coverage 
based testing. An approach is described in which it is 
possible to compute reliability oriented partial coverage 
measures, and to avoid the problems of infeasible coverage 
items. Potential applications of the method, including a 
review of an industrial project that can be interpreted as 
having used it in an informal way, are discussed. 

2. Theoretical foundations 

The basic statistical approach that is used is hypothesis 
testing. In this approach we formulate an hypothesis H and 
design a statistical experiment E for verifying H. E is 
designed so that the assumption that H is false determines 
an upper bound on the outcomes of E. If the assumption 
that H is false produces an upper bound U on an observed 
outcome e of E, we conclude that H is true with 
confidence at least C = 1-U. Intuitively, the approach is 
based on the idea that if the assumption that H is false 
leads to an outcome bound U that is small, then the 
assumption that H is false is led to an unlikely event, 
indicating that H is probably true. 

The application of hypothesis testing that is used in this 
paper involves the estimation of the “size” of a subset D’ of 
D. The size of a subset D’ is the probability of selecting an 
element from D’ when items are selected at random from 
the whole set D. It is assumed that elements are selected at 
random according to some probability distribution for the 
set D. The hypotheses are that the size of D’ is less than or 
equal to a bound B. It is assumed in the following results 
that probabilities are discrete, so that the domains of 
interest are finite and have distributions in which each 
element has some probability of Occurrence when items are 
randomly selected. 

The first two theorems are well known results in the 
area of statistical testing. 

Theorem 1 Suppose that in a sequence of N random 
samples from a domain D we see no elements of a subset 
D’. Then we can have confidence at least C, where 

c = I-(1.B)N 

that probability of choosing an element from D’ is less than 
B. 

A more general result, when some items from D’ are 
seen, can also be derived. 
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Theorem 2 Suppose that in a sequence of N random 
samples from a domain D, we see n elements from a 
subset D’. Then we can have confidence at least C, where 

~1. (~)BO(l-B)N+(~)B(l-B)N-l+ __. +( ;)B”(l-B)N-” 

that the probability of selecting a” item from D’ is less than 
or equal to B. 

The discussion of confidence based testing has 
periodically reappeared over the last 20 years, and 
variations of the above fommlae have been described by 
different authors [e.g. l-81. 

In the above results, we assumed that sampling was 
done with replacement, and that the domains D and D’ 
were fixed at the beginning of the statistical process. In the 
case of testing and test coverage this is often too 
restrictive. If D’ is the subset of a program’s domain D 
over which a program fails, then if we correct faults as they 
OCCUT, D’ will change, and grow smaller. We present here 
an alternative result, called adapdve sampling, in which D’ 
can change in this manner. 

Theorem 3 (adaptive sampling). Suppose that a 
sequence S of N samples is made from a domain D, with a 
subset D’. Suppose that each time a sample item comes 
from D’, it and possibly other items are moved from D’ to 
D-D’, and a new D’ set is constructed. Suppose that during 
the sequence S tbare are n samples in which a” item is 
from the current version of D’ occurs. Let D” be the final 
version of D’, constmcted “sing S. Then we can have 
confidence at least C, where 

C= 1-(~)~0(l-~)~+(~)B(l-B)~-~+ _.. +( ;)B”(l-B)N-” 

that the probability of selecting a” item from D”, when a 
random item is selected from D, is less than or equal to B. 
i.e. the same fommla that was used for estimating D’ in 
Theorem 2 can also be used for estimating D”, the adapted 
version of D’ 
Proof. The proof is based on the following observation. 
Suppose that D’ and D” are two subsets of D. Suppose 
that the probability of choosing a” item from D” is less 
than choosing one from D’. Consider the probability P’ 
of drawing at most n (i.e. m) items from D’ in a set of N 
samples from D, and P” the probability of drawing at 
most n items from D” in a set of N samples from D. 

The probability of drawing at most n items from D’ will 
he smaller than tbat of drawing at most n from D”, since 
for each sample from D’ the probability of getting a” item 
is higher than for D” so that we would have expected more 
subset items to be seen, i.e. P” zz P’. 

In the above we assumed that items are drawn from 
fixed sets D’ or D”. Call this the simple sampling method, 
as opposed to adaptive sampling, under consideration in 
this theorem. In adaptive sampling we start with a domain 
D and a subset D’ = Dl of special items, and when a item 
is found in Dl, it and possibly other items are “moved out” 
of D 1 into D-D1 , to create a new special item subset D’ = 
m. Assume that in a sample of N items, new items from a 
Subset Di a~ SW” 0” n Of those S~pkS. Let D” = D”. 

Let P’ be the probability of seeing at most n special 
items when the adaptive sampling method is used, and 
where the final set Dn is such that the probability of 
selecting a” item from Dn is greater than some bound B. 
This means that each time a sample was drawn, there was a 
probability of at least B that a special item would be seen. 
Let P” be the probability of seeing at most n special items, 
if simple sampling were used on a set for which the 
probability of seeing a special item was = B. Now P’ti”, 
because the probability of seeing a special item during the 
simple sampling process will be less than that of having 
seen a special item during adaptive sampling, so it will be 
more likely for there to be at most n special items in the 
simple process, i.e. P”zP. Hence, if the probability of 
seeing a special item from the final version D” = D, of D 
were >B, the probability of having seen special items from 
earlier versions of the sets D’ on at most n samples of the N 
tests is bounded by 

Ps P” 
=(;)BO(~-B)N+($B(~-B)~-~+ +( ;)B”(l-B)N-“. 

This implies that we can have confidence at least C = l- 
P” that the probability of seeing a” item from the final 
version D” of D’ on the next sample is less than or equal to 
B. § 

In addition to the above basic theorems, we can also 
develop theorems that involve combinations of results. 
The tint theorem below, which was first reported in [9], 
addresses the important situation where we have 
independently verified the same result several times. It 
indicates how we can combine results from parallel efforts. 

Theorem 4 (parallelization) Suppose that from K 
independent sets of N samples we can have confidence at 
least Ci that the size of a subdomain D’ of D is less than or 
equal t” B, l&K. Then we can have confidence at least 
C, where 

c =l-(l-CI)(l-C2)...(l-CK) 

that dx subdomain D’ is less than or equal to B. 
Proof: Suppose that p is the probability of choosing a” 
element from D’. If we have determined from the i’th 
experiment that we can have confidence at least Ci, l&K, 
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that p is less than or equal to B, then we have seen the joint 
occurrence of K independent events each of which has the 
following property. The assumption that p>B implies that 
the probability of their occurrence was less than l-Ci, 
ki&L This means that the probability of their joint 
occurrence was at most 

(l-Cl)(l-Q)...(l-CK 

so that we can have confidence at least C that p 5 B, where 

c= 1-(1-c1)(1-c2)...(1-cK). 5 

The above theorem could be used in the following way. 
The earlier theorems show how many tests are needed in 
which a certain fraction of the elements do not fall in a 
subset D’ in order to achieve a required level of confidence 
C in a bound B. If B is very small, then an enormous 
number of tests are needed to achieve a reasonable level of 
confidence C. What we do is to instead choose K small 
confidences Ci, reducing the size of the number of required 
tests, and then carry out K testing experiments in parallel 
in order to establish a cumulative C at a reasonable level. 

Theorem 4 cannot be applied when adaptive sampling is 
used, since each of the K experiments would produce 
results for different final sets D”. This indicates that, as it 
stands, it should be used with systems where we will carry 
out a reliability testing process during which the set of 
items of interest, D’, is fixed. However, similar results can 
be achieved if we assume the following. During an 
adaptive sampling process elements are moved from D’ to 
D-D’, resulting in a new D’, and eventually a final set D”. 
We may not know what is in D’ or D”, but we may be able 
to assume that we will know the contents of the subsets R’ 
of D’ that are moved in this way. Let R” be the union of all 
of the sets R’ that are identified during a sampling process. 
This means that at the end of an adaptive sampling process 
we will know that D” = D’-R”, but still of course not 
necessarily know the original D’ or the final D”. Call the 
sets R” the sample change sets. 

Theorem 5 (adaptive sampling with paralleliition) 
Suppose that a set of K independent testing experiments is 
carried out, and that we are able to establish with 
confidence Ci that the reduced sets Di” that are produced at 
the end of each of the experiments are bounded in size by 
B, k&K. Let Ri” be the sample change subset for the i’th 
experiment. Let R” be the union of all the sample change 
subsets for the independent experiments. Then we can 
conclude with confidence at least C, where 

c = l-(l-cl)(1-c2)...(l-c~ 

that the probability of selecting an element from 

i=l - 

is less than or equal to B, where j is any index in the range 
l<jzX, where the “x” symbol stands for set intersection, 
and the I’-” for set subtraction. 

The implication of the above is that we carry out K 
independent experiments and record the sample change 
sets for each experiment. At the end of all of the 
experiments, we choose any individual experiment and use 
the total sample change set R” to remove any additional 
items from its final D” set that were removed in the other 
experiments. The “size” of the resulting set D” will be ZG B. 

F’rcx~f: The last equation holds because it will subtract 
off from any Dj” the subsets of items that were removed 
from D’ in forming the Di” for each of the experiments, 
leaving them all the same. 

Our hypothesis will be that there is at least one j, 
kj&, for which the final set Dj” is 5 B. If this is not true, 
then all of the final sets Di” must be larger than B. This 
implies that we have seen K independent experimental 
results the probability of whose separate occurrences are 
less than (1-Q. ldzX, or whose joint occurrence is 
bounded by the product of these terms. Hence we can have 
the above confidence that this is not true, that at least one 
final Dj” is zz B. Now if at least one of these is 5 B, the 
intersection of all of the Di” must lx 5 B, so that we can 
have the same level of confidence in this derived result, 
proving the theorem. § 

The following theorem has a variety of applications. 

Theorem 6 (domain decomposition) Suppose that a 
domain D can be partitioned into K disjoint subsets Di and 
that D’i = intersection(D’,Di). l&X. Recall that the size of 
D’i relative to Q is defined to be the (sample distribution 
weighted) fraction of Di that lies in D’i , i.e. it is the 
conditional probability of choosing an item from D’i given 
that an item from Di is chosen. Suppose that we can have 
confidence Ci that the relative size of D’, is less than or 
equal to B, k&K. Then we can have confidence min{Ci, 
l&K} that the size of D’ is less than or equal to B. 

proof: Suppose that the size of D’ is >B. Since the sets 
D’i are disjoint, the probability of choosing an item from 
their union is the sum of the probabilities of choosing an 
item from each of the sets, i.e. 

size(D’) = size(D’I)+size(D’2)+...+size(D’K). 

Also, the sum of the sizes of the Di, lzi& must be 1. 
This implies, that if size(D’)>B, that 

size(D’l)+size(D’2)+...+size(D’K) > 
B(size(Dl)+size(D2)+...+size(DK)) 
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so that for some j, where kj<K, 

size(D>) > B(size(Dj)), 

since otherwise the inequality would be fake. The 
probability of choosing an item from D’j, given that an 
item from Dj is chosen, is given by the Bayesian formula 

pmbability(item from Dl and item from I$) 
f pmbability(item from Dj) 

and since D’j is a subset of Dj, this is equal to 

(pmbability(item from D’j) + probability(item from Dj)), 

= size(D’j)+size(Dj) 

so that if size(D’)>B, then for some j 

pmbability(itcm from D!, given an item from Dj) >B. 

But we know with confidence Cj that this probability is 
% B. This means that if size(D’)>B, then during the 
determination of the bound for size(D’j), an experimental 
sample occurred whose probability was less than 1-Cj. i.e. 
we can have confidence at least Cj that size(D’)zzB. Since 
we do not know the value of j, we can take the maximum 
of the event probabilities Xi, l&K, i.e. the minimum of 
the confidence levels Ci, l&K. 3 

The following corokxy makes it possible to replace a 
sampling problem involving a non-uniform distribution 
with K sampling uniform distribution problems. 

Corollary 6.1 (uniform decomposition). Suppose that 
the distribution of items in D is uniform OWT Di. l&K. 
Suppose that for each Di we use random sampling 
according to the uniform distribution to establish with 
confidence at least C that the size of D’, = intersection(D’, 
Q), relative to Q. is less than or equal to B. Then we 
know with confidence at least C that the size of D’ is less 
thanorequaltoB. 

The special case of Corollary 6.1 where no items from 
D’ are found during sampling, and the same number of 
tests can be used to establish a common confidence level 
for each subdomain, is reported in [lo], in which [6] is 
referenced. 

The following corollary is used later in the paper to deal 
with situations where the input to a program consists of 
both internal data I, and external data E. 

C0r0llary 6.2 (projective domain decomposition) 
Suppose that D = I*E is the cross product of two domains I 

and E. Let D’ be a subset of D. Assume that I can be 
decomposed into K disjoint subdomains Ii, l&xK, having 
the following properties. Let slice(Ii) be the subset of the 
input domain corresponding to the cross product Ii*E. 
Assume that we can have confidence at least Ci that the 
size of intersection(slice(li), D’) relative to slice(Ii) is less 
than or equal to B, l&K. Then we can have confidence 
min{Ci, kkK} that the size of D’ is less than or equal to 
B. 

The following three corollaries describe situations in 
which Corollary 6.2 is applicable. 

Corollary 6.3 (projective distribution decomposition) 
Suppose that D, I, E and D’ are defined as above. Assume 
that for each subdomain Ii*E, there is a separate 
probability distribution pi that gives the frequency of 
occurrence of items in SliCC(Ii), relative to SliCe(Ii). 
Suppose that for each i, l&K, we sample from slice(Ii) 
using the sample distribution pi, and determine with 
confidence Ci, that the size of intersection(D’, slice(Ii)), 
relative to slice&), is less than or equal to B. Then we can 
conclude with confidence min{Ci, l&X} that the size of 
D’ is less than or equal to B. 

Cordbuy 6.4 (uniform projection) Suppose that D = I*E 
is the cross product of two sets I and E, and assume that 
there are probability distributions p and q for I and E, such 
that for each (x,y) in I*E, the probability of occurrence of 
(x,y) is Hx)*q(y). Assume that there is a partition of I into 
disjoint sets Ii, lkK, such that the distribution p is 
uniform over each 4. Consider the following factored 
approach to choosing samples from slice(&) = Ii*E. First 
an element x is chosen randomly from Ii, and then 
combined with a random element y from E. In the case of 
Ii, the uniform distribution is used, and in the case of E, its 
distribution q is used. Suppose that this method of 
sampling is used to establish with confidence Ci that the 
size of the intersection of slice(Ii) with a set D’ in I*E, 
relative to slice(I is less than or equal to B. Then we can 
have confidence min{Ci, l&X} that the size of D’ a. 

Corollary 6.5 (reducible uniform projection) Assume 
that D, I and E are as in Comllary 10.4, and that D’ is a 
subset of I*E for which the following also holds. Consider 
some Ii, where i is in l&K. For all z in E , and all x and 
y in Ii, assume that (x.2) is in D’ if and only if fy,r) is in D’. 
Suppose that we can show for at least one x from each Ii 
that we can have confidence at least C that the size of 
intersection(slice({x}), D’) is less than or equal to B. Then 
we can have confidence at least C that the size of D’ is less 
than or equal to B. 
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3. Coverage and fault models 

The above theory can be applied to statistical testing in 
the following way. The subset size that we are trying to 
estimate will be that of the subset of a program’s input 
domain over which the program fails, i.e. its failure 
density. Theorem 3 can be used if we run N tests, and see 
n failures, and we fix the corresponding fault each time a 
failure is seen. The only restriction on this application is 
that each time we fix a fault we reduce the failure density, 
or at least do not increase it, i.e. fault repair is either perfect 
OT at least “productive”. Theorem 4 indicates how stronger 
reliablity results could be obtained by carrying out 
independent parallel testing efforts. Theorem 5 indicates 
that we can achieve the given reliability result even while 
adaptive sampling is used if we keep track of the faults that 
are removed in each of the independent experiments, and 
also remove them from the others. As above, we have to 
assume that fault repair is productive, i.e. that the size of 
the failure density is not increased when a fault is repaired. 

There are several major difficulties in using statistical 
testing. One is the large number of tests and subsequent 
output validations that must be performed. Others are the 
failure to distinguish between critical and non-critical 
cases, and between cheap and expensive tests. These 
problems encourage the use of a non-statistical, coverage 
oriented approach to testing. 

Coverage testing is associated with a strategy for 
decomposing a program’s input domain into subsets, and a 
requirement that at least one test be selected from each 
subset. In some cases the subsets are disjoint, and in others 
they overlap. A variety of different kinds of coverage 
strageties can be identified [e.g. 11-131. The most 
widespread program coverage method requires that each 
branch in a program be executed on at least one test. 

The coverage subsets that are generated by different 
coverage methods can be thought of as fault models. A 
fault model M is defined to be a set of subsets F of a 
program’s input domain that has the property that if there is 
a fault of type M present, there is some subset in F over 
which the program fails for all elements of that subset. 
Coverage testing, from this viewpoint, is a method for 
insuring the absence of faults associated with different 
fault models. 

In general, model based testing will only guarantee the 
absence of maim faults in which a moeram fails for all 
data in a coverage element. In practlck, aprogram may fail 
for part of a coverage element. This can be interpreted as 
resulting from two possible causes. The first is when a 
model is not refined enough, the subsets need to be 
smaller, defined perhaps using a compound coverage 
strategy that takes more program detail into account. The 
other cause is when a program contains a fault of omission, 
where code or data is missing that is needed to define more 
refined coverage subsets. If the information that is needed 
for the more refined definition is not available, then 

coverage based testing will be unsuccessful. Based on this, 
we conclude that coverage based fault models are good for 
errors of commission, in which the program fails for 
particular data or for particular program constructs, but 
weak for errors of omission. 

The need for more refined models in which it would be 
less common for a program to fail for part of a model 
subset can be interpreted as one of the motivations for the 
development of compound models in which coverage 
subsets correspond to combinations of simple coverage 
elements. Current compound program oriented coverage 
methods include def-use coverage in which it is necessruy 
to carry out tests which execute each pair of statements 
where the first defines data used by the second [14]. 
Others include LCAJS [I51 testing, in which certain 
combinations of sequences of program statements have to 
be covered on at least one test. 

Compound coverage can also be defined at a systems 
level, where coverage items correspond to possible 
interactions between different parts of a system. Different 
approaches may be identified with different kinds of 
systems. In a rule-based system, combinations of rules we 
used in response to different stimuli. Each combination 
can be thought of as an abstract system state that occurs 
when the program is used. In a distributed system, 
interactions may correspond to different possible 
subsequences of communication primitives, where one task 
calls another task while that task is in the process of calling 
a third. 

4. Statistical coverage and model based 
reliability estimates 

Two major problems in the use of coverage models are 
infeasible coverage elements, and the reliability 
interpretation of partial coverage. 

Even for simple, non-compound, coverage, it is 
common to require less than 100% coverage. There can be 
several reasons for this. One possibility is the effort it 
takes to find tests for that last 10% of the program’s 
branches or other coverage elements. Related to this is the 
problem of infeasible coverage elements: there may be no 
data that causes some items to be covered, i.e. their 
associated fault model subsets are empty. 

The infeasible coverage element problem is exacerbated 
when compound coverage is used: many coverage items 
may be infeasible. For example, suggestions for testing 
and analysis of distributed systems often involve the use of 
system reachability graphs [16]. These show the set of all 
possible states and state transitions for a system. Such 
graphs are enormous, and suggestions that we test 
sequences of branches that correspond to interleaved 
possible states is impractical. Different reduction 
approaches to this problem have been suggested [e.g. 171, 
but, in general, the problem of determining which arcs in a 
reachability graph are feasible in order to determine if 
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complete or partial coverage has occurred, may lx very 
difficult. 

The problem of infeasible coverage items is not just that 
many items may be infeasible, but that it is difficult to 
know which are feasible and which are not, so that it is 
difficult to know when “complete” coverage of all feasible 
items has been achieved. It will be just as difficult to know 
when partial coverage has been achieved. Even though it 
is not the general case, this can be a problem even when 
simple compound coverage is used, such as def-use. [141. 

In addition to the infeasible element problem, one of the 
problems of coverage oriented testing is the lack of a 
reliability interpretation of partial coverage. What does it 
mean that we have tested 90% of all feasible coverage 
items? These problems can be approached using statistical 
coverage. 

In statistical coverage, we do not require that the set of 
all possible compound coverage items be a priori 
identified in order to determine if coverage has been 
achieved. Instead, we generate test data according to a 
program’s operational distribution, and continue to require 
additional coverage tests until it is unlikely that new 
coverage items will appear. 

Statistical coverage solves the problem of finding a 
reliability interpretation for partial coverage in the 
following way. Suppose that M is a fault model associated 
with a set of coverage sets F for a program. Let F’ be a 
subset of F that has been observed during a set of tests. 
Suppose that we are C confident that the probability of 
seeing a new coverage item from F-F on a subsequent test 
is less than or equal to B, and we have established that the 
program does not fail on a test set in which there is at least 
one test from each subset in F’. Then we can be C 
confident that the probability of the program failing on a 
subsequent program execution due to a fault of type M is 
less than or equal to B. Recall that we say that a program 
has a fault of type M if and only if it fails on all elements 
of an associated subset in F. 

The basic theory from the Theoretical Foundations 
Section of the paper can be used in the statistical approach 
to coverage in the following way. We assume that as 
testing progresses, there is some subset D’ consisting of 
input data that would cause a new coverage item to be 
seen. Once a new coverage item is seen, it is no longer 
new so that the set D’ changes to a new set D’ when the 
input data that caused the new coverage item to be covered 
is “moved out” of D’. This situation corresponds to that 
described in Theorem 3, which gives a formula for 
computing confidence when n new coverage items have 
been seen in a sequence of N tests. 

The adaptive sampling theorems (3 and 5) apply to the 
coverage testing situation in a natural way. Each time a 
new coverage item is seen, D’ is reduced. Recall that in the 
case of statistical testing we needed to assume that the 
analogous event, observation of a fault, resulted in perfect 
or productive fault repair, in order to ensure that D’ was not 
increased. 

The statistical results allow us to start with an initial 
coverage set X, or with no previously covered items (i.e. X 
is empty), and then determine, as we go, when it is unlikely 
that we will see an item not in X, or not in an earlier part of 
the test sequence. We would then carry out a minimal set 
of tests that covers all of X and any new coverage items 
seen in the test sequence. 

Statistical coverage testing retains some of the 
important advantages of coverage based testing in the 
following way. Suppose that the problem in statistical 
testing with large numbers of tests is the expense of 
validating large numbers of subsequent test outputs. In 
statistical coverage, we may have to ran a large number of 
tests, as in statistical testing, but, as in coverage based 
testing, it is only necessary to validate output for a test set 
that covers each of the coverage elements. In statistical 
coverage we may have to run many tests to confirm that 
new coverage is unlikely, but it is only necessary to record 
and compare coverage for the tests. We could then use a 
minimal covering subset of these tests for output 
validation. 

The use of an initial coverage set X allows us to first 
test for critical cases to make sure they are covered, as in 
tmditionaI coverage, and then go on to a statistical phase. 
Since the critical cases coverage is included in the set of 
“already seen” coverage items, it contributes to the overaIl 
reliability measurement effort. 

Statistical coverage may also retain the non-statistical 
coverage testing advantage that facilitates the use of cheap 
tests. If a test is only expensive due to the cost of its 
output validation, and if the input domain subsets for 
coverage elements contain both cheap and expensive test 
cases, then we can restrict the output validation phase of 
statistical coverage to cheap tests. 

The fact that it is only necessary to validate output for a 
covering set of tests, and that during reliability estimation 
it is sufficient to record and compare coverage, opens up 
the possibility of establishing more extreme reliability 
results than might be possible for ordinary statistical 
testing. This is because it will nommlly be possible to 
automatically record and compare coverage, even for 
compound coverage models. In statistical testing, 
corresponding extreme levels will only be possible if 
system output can be and as easily and inexpensively 
automatically validated. 

The statistical coverage approach that has been 
described here is a paper approach in the sense that it has 
not been used on a real system. The basic theory has been 
worked out, and some of the results such as the adaptive 
confidence and pamllelization theorems are solutions to 
important problems in both statistical testing and statistical 
coverage. But it would be reassuring to see at least some 
evidence of the idea’s practicality. The following example 
reviews a testing project that was described in [18]. It can 
be interpreted as an informal application of the method, 
and an existence proof of its applicability. 
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4.1 Role baaed systems example 

The example involves a rule based system for 
monitoring system states. In this example it was necessary 
to test a system that could be in an astronomically large 
number of possible states. The states correspond to 
combinations of different rules that could occur when the 
rule oriented system is executed, and can be viewed as 
abstract compound coverage states. The goal was to cover 
these states in some way. It was impossible to consider a 
traditional coverage approach in which all of the states, or 
even some fraction such as .9, were covered. 

The approach used in the monitor testing project was to 
first run the system and observe the set Y of actual states 
that occurred over a relatively long period of time, i.e. over 
a large set of tests T. After this was done, a set of 
potential tests for which correct behavior was known was 
examined to find a minimal covering subset, i.e. a minimal 
set of tests that covered all of the states in Y. This minimal 
set was then used for actual verification testing. The 
approach made it possible to informally confirm the 
reliability of the system, with respect to rule combination 
state coverage, using a relatively small number of output 
validations. 

The first phase in the monitor example, the generation 
of Y, corresponds to the phase of statistical coverage where 
random testing is carried out until it is unlikely that any 
more coverage items (i.e. states) will be seen. In this 
example, there is no initial set X. We informally observe 
that after a certain point, new coverage items appear 
infrequently. The second phase in the monitor example 
corresponds to the phase of statistical coverage where we 
validate output for a test subset T’ that covers all the 
coverage items that have teen seen. 

The monitor example describes an informal approach to 
reliability estimation. The confidence based coverage 
methods described in this paper could be used to compute 
formal coverage based reliability figures for this kind of 
application. 

5. Functional and non-functional programs 
and systems 

In the above discussion, both for statistical testing and 
statistical coverage, systems and programs wxc viewed as 
input/output functions where we choose random input 
cases, and then look at output or other kinds of behavior. 
For some kinds of systems this is inappropriate. These will 
be referred to as non-functional systems, in which 
persistent or static data is retained from one use of the 
system to the next, and becomes pan of its input. In this 
case, the system uses both the persistent data and “new” 
input data for each computation. These will be referred to 
as the internal and the external input data. 

Several possible approaches to systems with internal 
and external data can be suggested. One possible approach 

involves the use of the corollaries to Theorem 6, domain 
decomposition. Suppose that E is the set of all external 
inputs to a system, and that I is the set of possible internal 
data sets, so that the total input space for each use of a 
system is formed from the cross product D = IxE. In these 
corollaries we assume that we can decompose I into 
subsets Ii, lti&, for which we lcnow the distribution of 
internal and external data. In one case (Corollary 6.3) we 
assume that we know a joint distribution for internal and 
external data for each individual subset. In another 
(Corollary 6.4) we assume that there is an independent 
distribution for the external data, and we can decompose 
the internal data into subsets over which internal data cases 
are uniformly distributed. other c0rr01alies can be 
developed for alternative models of the relationship 
between internal and external input data. 

6. Related work 

The author previously presented a less formal, 
preliminary version of some of this work that contained the 
basic idea of termination of testing when new coverage is 
statistically unlikely, in (191. Once the approach had 
been developed to its current point, several connections 
with other work, including the above rule based example 
could be seen. Additional theory and examples can be 
found in an expanded version of the paper [20]. 

Other related work includes the testing and reliability 
results in [21], which use the concept of “useful testing 
effort”. In their paper the authors define useful effort as 
that which increases coverage with respect to some 
coverage measure. This can be compared to the idea in 
statistical coverage that we discontinue testing when new 
coverage is unlikely. 

Related work also includes attempts to characterize the 
effectiveness of testing and analysis methods, and to 
develop a framework for predicting the reliability of a 
program based on the effectiveness of the methods used to 
evaluate it. One approach involves estimates of the 
detectabilty of different methods. Detectability is an 
empirical estimate of the probability that a method will 
detect a fault of some kind, given that the fault is present. 
Suppose we have a collection of methods Mi, l&m, a 
collection of fault classes Fj,, lsja, estimates of the 
probability fj that a program wdl contain faults from class 
Fj, and estimates of the detectability Di,j for methods Mi 
and fault classes Fj. Then we can consuuct a simple min- 
max formula that gives the probability P of there being a 
residual fault in a system fmm one of these fault classes, 
after the set of methods Mi has been applied, if such a fault 
were present. The complement 1-P of this number might 
be used as a measure of confidence in the absence of such 
faults, and is similar to the definition of software 
trustability used in [22]. 

There is also a large body of related work associated 
with reliability growth modeling [e.g. 23.251. This paper 
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has been restricted to a discussion of confidence based 
statistical methods. Some of the issues that have been 
studied in reliability growth modeling that are relevant 
including the problem of modeling a system’s operational 
distribution. Additional related work cm operational 
distributions is described in [8], [26] and [27]. Different 
kinds of operational distribution models for complex 
systems are closely related to the models used to describe 
complex input domains like those in the corollaries to 
Theorem 6. 

7. Summary and conclusions 

The basic theoretical results for confidence based 
statistical testing and test data coverage were reviewed and 
several additional results presented including the adaptive 
sampling theorem (3), the parallelization theorems (4.5). 
and the corollaries to Theorem 6 that describe possible 
methods for applying the approach to non-functional 
systems containing internal input data. 

It was pointed out that if output validation is expensive 
there is a potential practical problem for the application of 
statistical testing. A suggested approach is to use a new 
method called statistical coverage measurement. In tbis 
approach, testing is baited when it is unlikely that no new 
coverage elements will be seen. When this strategy is 
followed, it is only necessary to validate output for tests 
that cover all of the coverage elements for a coverage 
model. Reliability can be established while running tests 
for which the only requirement is that we note if a new 
coverage item has occurred. The use of coverage methods 
was equated with the use of a program fault model, and 
reliability was interpreted with respect to such a model. 

The use of the parallelization theorems, along with 
statistical coverage modeling, raises the possibility of 
establishing stronger reliability results for a program. 
Pamllelization allows the results of separate reliability 
experiments to be combined. statistical coverage 
eliminates the need for output validation during the 
statistical phase of a testing process. It also has the 
advantage that it allows the easy incorporation of non- 
statistical testing efforts into the reliability computation 
effort. 

The compound coverage models that were discussed 
indicate that statistical coverage will be useful at the 
systems level where we want to cover program 
functionality associated with interactions between different 
pans of a system, such as communication/state interaction 
in distributed programs, object propetty interactions in 
abstract state systems, or rule combination in rule oriented 
systems. 

The proponents of growth modeling sometimes criticize 
confidence based approaches because they base reliability 
on the probability of a program failing, or a new coverage 
item occurring, on the next execution rather than predicting 
some future period of expected system behavior. But 

confidence based reliability for a program continues to 
hold for the second and subsequent executions of a 
program as long as we continue to see no failures 01 new 
coverage items. In fact, confidence will slowly increase 
with the number of successful runs. If a failure or new 
coverage item occurs, then we need to use the results of 
Theorem 2 or Theorem 3 to establish a new confidence 
level. 

Although the work in this paper is primarily of a 
theoretical nature, its results, such as adaptive sampling 
and parallelization, at the very least help to characterize the 
underlying principals of statistical testing and test 
coverage, and may also help to facilitate its use in 
appropriate situations. The monitor rules testing 
application from [16], for example, indicates the potential 
usefulness of the confidence based model to coverage 
based testing. 
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