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S U W A R Y  
The effectiveness in discovering errors of symbolic evaluation and of testing and static 
program analysis are studied. The three techniques are applied to a diverse collection of 
programs and the results compared. Symbolic evaluation is used to carry out symbolic 
testing and to generate symbolic systems of path predicates. The use of the predicates for 
automated test data selection is analysed. Several conventional types of program testing 
strategies are evaluated. The strategies include branch testing, structured testing and testing 
on input values having special properties. The static source analysis techniques that are 
studied include anomaly analysis and interface analysis. 

Examples are included which describe typical situations in which one technique is reliable 
but another unreliable. The effectiveness of symbolic testing is compared with testing on 
actual data and with the use of an integrated methodology that includes both testing and 
static source analysis. Situations in which symbolic testing is difficult to apply or not 
effective are discussed. Different ways in which symbolic evaluation can be used for generat- 
ing test data are described. Those ways for which it is most effective are isolated. The paper 
concludes with a discussion of the most effective uses to which symbolic evaluation can be 
put in an integrated system which contains all three of the validation techniques that are 
studied. 

KEY WORDS Testing Symbolic testing Symbolic evaluation Test data generation Anomalies 
Specifications 

INTRODUCTION 

There has been an increasing interest in the past few years in the use of symbolic evaluation. 
Symbolic evaluation is useful for several different kinds of program analysis. I t  can be used 
to automate test data generation, to assist in the proof of correctness of programs and 
program paths and to carry out symbolic program testing.l-1° A number of symbolic evalua- 
tion systems have been built which have a variety of capabilitie~.~-~ 

Research on symbolic evaluation, like that on other types of program testing and analysis 
methods, has concentrated on the design and implementation of tools which can be used 
to assist the user in the application of the methods. There has been relatively little research 
on the effectiveness of program testing and program analysis techniques. Exceptions 
include Gerhart and Goodenough’s study of the errors in a string processing program,ll 
Gerhart and Yelowitz’s survey of errors in programs and programming methodologies,l2 
analyses carried out by the l3 and the series of experiments described by Hetzel in 
his PhD. thesis.16 This paper describes the results of an analysis of the effectiveness of 
symbolic testing. 

If the use of a program testing technique is guaranteed to always reveal the presence of a 
particular error in a program, then the technique is said to be reliable for the error. The 
project described in this paper involved an investigation of the reliability of symbolic testing 
for the errors in six selected programs. Although the number of programs which were 
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analysed is small the analysis which was carried out was thorough and the results are of 
general interest, T h e  reliability of several techniques which involve testing on actual data 
and of several program analysis techniques which do not involve testing was also investigated. 
One of the goals of the project was to determine if the use of symbolic testing increases the 
reliability of the testing process in the sense that if symbolic testing is used in addition to 
testing on actual data then more errors are discovered than if testing is carried out on actual 
data alone. T h e  use of symbolic testing in automatic test data generation was also investi- 
gated. 

RESEARCH METHODOLOGY 

Programs 
Six programs were selected for analysis. All six programs have been previously studied in 

articles and books on testing, proving correctness and program debugging. Five of the 
programs contain naturally occurring errors. T h e  sixth contains a seeded error. T h e  six 
programs, together with the details of the results of the analyses, are contained in a more 
detailed report.14 

T h e  programs can be divided into three categories, each containing two programs. 

Data processing 
The  first program is a COBOL validation program. It contains about 450 lines of code. 

T h e  program appears in the book on debugging by Brown and Sampson.15 The  program 
validates transaction cards that record stock update information. T h e  validated cards are 
used by another program to update the stock inventory file. There are a number of different 
possible transactions, each requiring a different validation subroutine. The  program con- 
tains three errors. 

T h e  second program is a PLI updates program and is one of the examples used by 
Hetzel in his thesis.16 It contains about 175 lines of code. T h e  program reads in student 
exam scores from an updates file and uses the information to update a history file. It also 
prints out a number of reports during the updating process. T h e  program contains 20 
errors. 

String processing 
Two of the six programs are written in ALGOL and are string editing programs. They 

are typical of a class of programs which has been used in the literature to discuss structured 
programming. 

T h e  first ALGOL program appears in the paper ‘An experiment in structured program- 
ming.17 T h e  program has 25 lines of code. The  program reads a string of characters that form 
a sequence of telegrams. A telegram is a string that terminates with a special substring. The  
program isolates and prints out each telegram along with a word count. It contains one error. 

The  second ALGOL program appears in ‘Programming by action clusters’ls and is the 
program analysed by Goodenough and Gerhart.ll It has 21 lines of code. T h e  program is 
supposed to read a string of characters consisting of words separated by blanks and line 
break (NL) characters, and output as many words as possible on each line (in the same 
order) so that there is a separator between every two words, no word is broken between two 
lines, and each line has at most MAXPOS characters. T h e  program contains two errors. 
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Utili ty routines 
T h e  remaining two programs will bc classified as utility routines. The  first of the two is 

a PL-360 sort program which has 13 lines of code. T h e  program uses the familiar ‘find the 
next largest’ algorithm for sorting. T h e  source of the program is an article on PL-360 by 
Wirthls and is one of the programs described by Gerhart and Yelowitz.12 The  program 
contains one error. 

T h e  second of the two utility routines is a program for computing the total, mean, standard 
deviation, minimum and maximum for each variable in an observation matrix. T h e  program 
has 28 lines of code and appears in a study of program errors by Gould and Drongowrski.20 
T h e  program contains one error. 

Reliability of testing on actual data 
The  first part of the analysis which was carried out for each program was designed to 

determine which of the errors in the program would be reliably discovered using one of 
several conventional types of testing strategies. Each of the conventional testing strategies 
requires the execution of programs on actual data. The  conventional testing strategies 
whose reliability was analysed are described briefly below. 

Path  testing13 
Path testing involves the testing of every path through a program at lcast once. Since 

most programs will have a very large, if not infinite, number of paths, the method is of 
theoretical rather than practical importance. It is useful to analyse how reliable path testing 
would be if it could be implemented since it provides an upper bound on the reliability of 
test techniques which involve the selection of a subset of the set of all program paths. 

Branch t e ~ t i r i g ~ l - ~ ~  

once. It is one of the simplest and best known approaches to systematic testing. 
T h e  branch testing technique requires that each ‘branch‘ in a program be tested at least 

Structured testing24. 25 

T h e  structured testing approach is an attempt to approximate path testing. I t  requires 
that the program be decomposed into a hierarchy of functional modules. Modules at the 
lowest level of abstraction are segments of code. Modules at  the higher levels are mixed 
sequences of code and functional modules from the next lower level of abstraction. 

I n  the structured testing approach all paths through a functional module which 
require less than or equal to k (usually k = 2) iterations of loops are tested at least once. 
Variations in this rule are necessary in special cases where this would leave parts of a 
module untested because of complicated loop indexing operations and dependencies 
between loop bounds. 

It is possible to distinguish between two kinds of structured testing: integrated and 
functional. I n  functional testing individual functional modules are tested like separate 
programs. Input is constructed for each module and the final values of selected variables 
in the module are examined when the module terminates. I n  integrated testing functional 
modules are tested within the context of the entire program. For each functional module 
subpath that needs to be tested, a test for the entire program is constructed which causes that 
subpath to be traversed. 
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Special values testing 
Special values testing is a test strategy which requires the testing of a program over input 

values having special properties which, experience indicates, are important to the testing 
process. Several useful special values rules were discovered during the project. Some of 
these are listed below. A more extensive research project might have the expansion and 
completion of this list as one of its goals. 

(i) Distinct values. The distinct values rule requires that when a program contains a 
number of different input variables or arrays which are used for holding different 
kinds of, but related, data that the input values for the variables and arrays should be 
distinct (i.e. not equal). Elements of individual arrays should be distinct if possible 
and if two arrays store values from the same set, elements in corresponding array 
element positions should be distinct. 

(ii) Zero values. The zero values rule requires that tests should be carried out which 
result in the assignment of zero values to variables which occur in arithmetic 
expressions. 

(iii) Input classes. For many programs, the input divides naturally into several classes. 
String processing programs, for example, may distinguish between blanks, certain 
special words and non-blanks. Data processing programs may distinguish between 
several kinds of input records based on the values of one or more keys. The input 
classes rule requires that a program be tested on each of the different possible 
general classes of input to a program. 

Special values testing can be used to refine the structured testing approach. In this 
combined method, special values are constructed for testing the paths which are generated 
by the structured testing approach. 

Reliability of other program analysis techniques 
Several of the errors in the sample programs either will not be discovered by testing on 

actual or symbolic data or their discovery by these methods appears to be unnatural and by 
chance. The discovery of some of these errors is more likely when program analysis tech- 
niques other than testing are used. The second part of the analysis which was carried out 
for each program involved an examination of the reliability of these other program analysis 
techniques for each of the sample programs. Several of these program analysis techniques 
are described below. 

Anomaly analysisZ6-28 

looking constructs. Two examples of the types of constructs it might report on are: 
This static analysis technique involves the examination of a program for suspicious 

(i) Size condition anomaly. Suppose that a fixed point (PL1) variable appears on the 
left-hand side of an assignment inside a loop with a variable loop bound. There may 
be input data which would cause a size condition to occur for that occurrence of the 
variable. 

(ii) Array bounds anomaly. Suppose that an array reference with a variable index is 
contained inside a loop and that the variable changes values in the loop (e.g. the loop 
index variable). If the loop bounds are variable and are different from the array 
bounds it may be possible for an out of bounds array reference to occur. The situation 
is particularly dangerous if the loop bounds are variable and the array bounds 
constant. 
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Speci$cations requirements 
Some errors can be avoided if certain kinds of information are required to be included in 

program specifications. The ‘variable ranges and types rule’ requires that for each input 
variable the type of the variable and the allowable range of its values must be specified. 
The  action to be taken by a program for values of the wrong type and outside the expected 
range must also be specified. If a program carries out conceptually different functions for 
different value subranges these must be specified. 

Interface analysis 
This term is used to denote rules for checking the interface between two routines or 

between a routine and the external environment. One example is a rule for checking the 
consistency of the format of structured input records with the format of the variables 
used to read in the structured records. The  data base verifier described by Hodges and 
Ryanz9 is an example of an interface analysis tool. 

Effectiveness of symbolic evaluation 
The final part of the analysis which was carried out for each program was designed to 

investigate the effectiveness of symbolic testing for discovering errors and the use of symbolic 
evaluation in the automated generation of test data. 

Symbolic 
A program is symbolically tested by symbolically evaluating selected program paths. 

The path selection strategy that was used in the analysis of symbolic evaluation is the 
same as that which is used in structured testing. I t  is possible to carry out functional and 
integrated symbolic testing using this path selection strategy. Throughout the rest of the 
paper ‘functional testing’ and ‘integrated testing’ will refer to functional and integrated 
structured testing on actual data. When symbolic testing is being referred to the terms 
‘symbolic functional testing’ and ‘symbolic integrated testing’ will be used. 

Some programming errors are due to faulty statements or combinations of statements 
which give incorrect answers whenever they are executed. Other errors are more subtle: 
the same sequence of statements may compute correct answers for some data but not for 
others. Testing rules that involve the execution of programs on actual data are reliable for 
catching errors of the first type. These rules force the testing of all program constructs of 
some kind. In  theory, symbolic evaluation should extend the reliability of these rules to 
errors of the second type. When a construct is tested on actual data the output is a 
single value which indicates the effect of the construct on a single piece of data. When a 
construct is symbolically tested the output is a symbolic expression which indicates the 
computational effect of the construct for all data. 

The  output from a symbolic test of a path consists of the symbolic values of a set of 
selected variables together with the symbolic system of predicates that describes the data 
causing that path to be followed. Symbolic testing is reliable for an error occurring in some 
path if the symbolic output for the path reveals the presence of the error. If a set of output 
assertions is provided along with the program then the correctness of a program path can be 
evaluated by determining if the output is consistent with the assertions. In  general, there 
will not be any assertions provided along with a program and the specifications for the 
program will be informal and incomplete. When there are no assertions the process of 
determining whether the symbolic output for a path is correct is informal. In  order to be 
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reliable, symbolic testing must not only reveal errors but must reveal them in a way that 
will, in some ill defined sense, catch the attention of the programmer. I n  the reliability 
analysis, symbolic testing was said to be reliable for an error if the symbolic output for a 
selected path revealed the error in an obvious way, If the error in a path occurred in the 
symbolic output in the same symbolic form as it appeared in the path, then symbolic testing 
was not considered to be reliable for the error. There is no reason for assuming that a 
programmer would notice the error in the symbolic output if the error was represented in 
the same way in the program. An example of this kind of error is a missing pair of paren- 
theses that occurs in an expression in the program which also occurs in the symbolic output. 

Automated test data generation1-8 

T h e  three possibilities that were analysed are : 
Symbolic evaluation can be used to automate the generation of tcst data in diffcrent ways. 

(i) Feasible pa th  selection. When functional or integrated testing is being carried out it 
is necessary to consider all program subpaths through a module which cause less than 
or are equal to two iterations of a loop. I n  some cases there will be an impracticably 
large number of paths which satisfy this criterion of which only a small number are 
feasible. (A path is feasible if input data exists which causes that path to be executed.) 
When a path is symbolically evaluated the conditional branching statement predi- 
cates along the path can be evaluated to form a system of predicates that describes 
the set of all data causing that path to be followed. I n  many examples it is possible 
to use systems of predicates to weed out the infeasible paths in a collection of paths. 
A path is feasible if and only if its symbolic system of predicates has a solution. 
Infeasible paths have inconsistent systems of predicates. 

(ii) Assisted test data generation. I n  many examples the symbolic systems of predicates 
for feasible paths are concise and easy to read. T h e  predicate systems for these 
examples can be used to assist the programmer in generating test data. 

(iii) Automatic test data generation. Data for testing a program path can be automatically 
generated if the system of predicates for the path is automatically generated and then 
automatically solved. I n  some cases it may not be possible to solve automatically the 
systems of predicates due to their complexity, (e.g. non-linear system of algebraic 
inequalities). 

RESEARCH RESULTS 

Reliability of actual data testing and other program analysis methods 
T h e  six programs which were analysed contain a total of 28 errors. Table I indicates the 

reliability of different testing techniques which involve testing on actual data. T h e  table also 
describes the reliability of program analysis techniques which do not involve testing and 
which were useful for discovering errors in the sample programs. 

T h e  reliability statistics in Table I indicate that path testing is reliable for a significant 
number of the errors which were analysed (18/2S). T h e  low reliability of branches testing 
(6/28) indicates that the detection of a significant number of the errors that will be 
discovered by path testing depends on the testing of combinations of program branches 
rather than single branches. Structured testing increases the reliability of branch testing 
(to 12/28) by forcing the testing of some of the relevant combinations of program branches. 
For three of the six programs, structured testing is sufficient to reveal all errors. Branch 
testing is reliable for only one of the programs. 
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Table I indicates that structured testing is not powerful enough to reveal a large number 
of the errors in the PLZ-TEST program. TEST is larger than all but one of the other 
programs (the COBOL program) and it contains a much wider variety of errors than the 
other programs. T h e  reliability statistics for TEST indicate the importance of program 
analysis and testing procedures other than those which are defined in terms of the control 
structure of a program. T h e  most reliable testing procedure for TEST is the special values 

Table I. Reliability statistics for testing strategies that use actual data and for other types of program 
analysis techniques 

Line 
COBOL PL1 (TEST) Telegram editor Sort Statistics 

A B C D E  I; Total 

1. Paths 
2. Branches 
3. Structured (functional) 
4. Structured (integrated) 
5.  Structured (combined) 
6. Special values 
7. Anomaly analysis 
8. Special requirements 
9. Interface analysis 

10. Combined (5-9) 

213 12/20 
3 120 
4/20 

313 

6/20 
313 
3 I3 
313 6/20 
313 10120 
213 2/20 

4/20 
2/20 oi3 

313 18/20 

013 

212 111 011 18/28 
012 011 011 6/28 
212 011 011 10128 

212 011 011 12/28 

012 011 011 
212 011 011 
012 011 011 2/28 

111 
011 
111 
111 
111 
111 
011 
111 
011 
1 I1 

212 011 011 12/28 

212 111 011 17/28 
4/28 
7/28 

2/2 111 011 25/28 

method. The  reliability figures for special values may be abnormally high since most of the 
special values rules were constructed by analysing TEST. It is important to note, however, 
that these rules are general and can be used with a wide range of programs. 

Testing strategies such as branches and structured testing force the testing of a program 
over classes of program input which are defined by the control structure of the program. 
I n  some cases a control structure testing strategy will fail to be reliable because it does not 
force the testing of the relevant paths through the program. I n  other cases it will fail 
because some of the input data causing a control path to be followed results in incorrect 
output and other data causing the same path to be followed results in correct output. 
Control structure testing strategies may also fail for certain kinds of errors which have no 
relationship with the control structure of a program. 

T h e  following examples describe some typical situations in which structured testing and 
other actual data testing and program analysis techniques are reliable or unreliable. 

Example I.-Structured testing reliable, branch testing not reliable. The  loop in Figure 1 
is taken from the third example, the ALGOL telegram program. T h e  program incorrectly 

word := empty string; 

repeat 
if input = empty string then input : = read -t ' ' ; 
letter := first (input) ; input := rest (input) ; 
word := word + letter; 
until letter = ' I ;  

Figure 1 .  Fragment of ALGOL string processing program 

fails to delete leading blanks whenever a new buffer-full of text is read in with the 'input : = 
read -I- I ' statement. This can result in the generation of a word consisting of a single 
blank. I n  order to force the error in the fragment it is necessary to follow the true branch 
of the conditional statement and exit from the loop on some first iteration of the loop. 
Structured testing but not branch testing will force the testing of a path with this property. 
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Example 2.-Special values reliable, structured testing not reliable. The code fragment 
in Figure 2 is taken from the fifth sample program, the PL-360 sort routine. The  entire 
sort loop of the program has been reproduced. The  inner loop of the program finds the 
largest element in the list a(R1), a(R2), ..., a(RN). R3 indicates the position of the element 
and RO its value. The  outer loop is supposed to interchange a(R3) and a(R1) and increment 
R1. The error results from the failure of the outer loop to reinitialize R3 to R1 before 
beginning the execution of the inner loop. If the value of R3 is not set during an execution 
of the inner loop then it will retain the value set on the previous execution of the inner 

for R1 = 0 by 1 to N begin 
RO -+ a(R1) 
for R2 = R1+ 1 by 1 to N begin 

if a(R2) > RO then begin 
RO -+ a(R2) 
R3 +- R2 

end 
end 
R2 + a(R1) 
a(R1) + RO 
a(R3) c R2 

end 
Figure 2. Sort program 

loop. This can result in a program state where RO = a(R1) and R3 # R1. When the inter- 
change code at the end of the outer loop is executed and the program is in this state, the 
array element currently stored in a(R1) will be duplicated. I t  will be recopied into a(R1) and 
also copied into a(R3). 

If uninitialized variables are detected during program execution then structured testing 
will reveal the error in this example. If, as is more likely, all variables are automatically 
initialized to zero then structured testing will not reveal the error if certain elements of the 
array have the same value. In  order to ensure that the error will be discovered it is necessary 
to apply the ‘distinct values rule’. This rule requires that input values for different variables 
and for different elements of arrays be distinct. The  rule is particularly applicable to data 
processing programs which move data around from one data structure to another and which 
carry out relatively simple calculations on the data. The  rule helps detect the use of the 
wrong variable or array element in an assignment statement. 

Example 3.-Anomaly analysis reliable, structured testing not reliable. The code fragment 
in Figure 3 is taken from the second example, the PLI-TEST program. The  innermost 
loop in the fragment has a loop bound of #EXAMS which is an input variable of precision 
binary (15,O). The  array PERCENTS is declared to be of size 10. The  expected range of 

DO I = 1 TO #STUD 

DO J 1 TO #EXAMS 

END; 
CUMAV(1) = OLDSCORES(1, J) * PERCENTS(J) + CUMAVE(1); 

END ; 
Figure 3. Fragment of PLI-TEST program 

values for #EXAMS at this point in the program is 1 < #EXAMS < 11. If #EXAMS = 11 
an out of bounds array reference will occur. The  error will not be discovered by a structured 
testing technique that involves iterating loops less than or equal to two times. The error 
will be discovered by the array bounds anomaly check described earlier in the paper. 
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Example 4.-Specifications requirements reliable, all other methods unreliable. The 
second sample program, the PL1-TEST program, contains a section of code that reads in 
student answers to exam questions. The  answers appear in single card columns and are 
expected to be integers in the range 0-9. The  PL1-coversion routines will convert a blank 
answer to a 0. There is no control structure, special values or anomalies technique that will 
reliably reveal this error. Of the different reliability techniques that were studied the only 
one which addresses itself to this kind of error is a requirement that the user list the accept- 
able ranges and types for each input variable. In  addition, he should list the expected 
actions to be taken by the program for input which is out of range or of a different type. 
This will not ensure the reliable discovery of this error but it will focus the programmer’s 
attention on potential problem areas. 

Effectiveness of symbolic evaluation 

test data generation. 
Table I1 describes the reliability of symbolic testing and the effectiveness of automated 

Symbolic testing 
The  results in Table I1 indicate that symbolic testing which is based on structured 

testing path traversal will result in the discovery of about 10-20 per cent more of the errors 
in the programs than structured testing on actual data. The  rows in the table which show 
the increase in reliability for symbolic testing contain two figures. The  first figure, not in 
parentheses, shows the number of errors that would be discovered by symbolic testing that 
would not be discovered by the corresponding actual data testing procedure. Symbolic 
functional testing, for example, will discover a total of five more errors than functional 
structured testing on actual data. The  figure in parentheses indicates the number of errors 

Table 11. Effectiveness of symbolic evaluation for program analysis 

Line 
COBOL PLI (TEST) Telegram editor Sort Statistics 

A 13 C D E  F Total 

212 111 011 
0 1 0 
212 111 011 
0 1 0 
212 111 011 

Functional 213 8/20 1 /I 
Increase for functional -1 4 (1) 
Integrated 213 9/20 1 11 
Increase for integrated -1 3 (0) 
Combined symbolic 213 1 1/20 111 

0 

0 

Feasible paths * * * * 
Assisted test selection * * * 
Automatic test selection 

* 

14/28 
5 (1) 

15/28 
4 (0) 

17/28 
416 
416 
016 

that would be found by symbolic testing that would not be reliably discovered by any of the 
actual data testing and program analysis techniques in Table I. 

The  five errors that would be discovered by symbolic functional testing but not func- 
tional testing on actual data all involve the use of an incorrect variable. There are four kinds 
of errors: use of wrong array variable; incorrect construct resulting in wrong array reference 
index; reference to the wrong fields in an input card record; and a missing array reference 
construct surrounding an array reference indexing expression. I n  all five errors it is possible 
for the incorrect variable to take on the values of the correct variable during testing on 
actual data, thus hiding the presence of the error. 
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Three of the five errors that would be discovered by symbolic functional tcsting but not 
functional testing would ‘probably’ be discovered by functional testing. This is because 
there has to be an odd pattern of input data in order for the incorrect variables to take on 
the same values as the correct variables. Two of these three errors would be revealed by 
structured-testing/special-values, the third by interface analysis. 

One of the five errors that would be discovered by symbolic functional testing would not 
be discovered by any of the testing and program analysis techniques in Table I. This is the 
error involving the missing array reference construct : an expression incorrectly returns the 
index of an array element rather than the referenced element of the array. I n  general, these 
values will not be the same but none of the testing rules that were studied, except symbolic 
functional testing, will be certain of revealing the error to the user. T h e  error is described 
below in Example 6. 

T h e  four errors that would be rcvealcd by symbolic integrated testing but not integrated 
testing on actual data are of the same type as the five errors that would be discovered by 
symbolic functional testing but not functional testing. All four involve the referencing of 
incorrect variables. Three of these four errors would also be discovered by symbolic 
functional testing. T h e  fourth error involves the use of an incorrect array whose name and 
function are similar to that of the correct array. It is unlikely that the error will be revealed 
if the arrays are assigned symbolic values that are the same as their names since the error 
will then be present in both the program and the symbolic output in the same form. If the 
functional module which contains the error is tested using symbolic functional testing the 
natural thing to do would be to assign symbolic values to the arrays which correspond to 
their array names. If the module is tested using symbolic integrated testing then the arrays 
will have symbolic values which are assigned earlier in the program and which are dis- 
tinctively different, T h e  error will be highly visible in the symbolic output which is 
generated during symbolic integrated testing but it is not unlikely that it will go unnoticed 
in the symbolic output generated during symbolic functional testing. 

Two of the five errors that would be discovered by symbolic functional testing but not 
functional testing on actual data would also not be discovered by symbolic integrated 
testing. One of the errors is the error that would not be discovered by any of the other 
techniques. T h e  distinctive property of the two errors is that they both involve references 
to incorrect variables and that both the correct and incorrect variables that are involved in 
the errors are assigned values that arc generated internally during the execution of the 
program. T h e  values of the variables are not input values nor are they directly related to 
input values. If the programs in which the errors occur are tested using symbolic integrated 
testing both the correct and incorrect variables will take on numeric rather than symbolic 
values. T h e  errors cannot be reliably discovered by examining output expressions involving 
the variables since the correct and incorrect variables can, under some circumstances, have 
the same numeric values. T h e  reason why the two errors will be discovered by symbolic 
functional testing is that the numeric values which are generated internally for the variables 
involved in the error are not generated in the same functional module in which the incorrect 
variable references occur. T h e  values for the variables are generated in one module and 
then the variables are incorrectly referenced in a second module. I n  order to carry out 
symbolic functional testing of the second module it is necessary to assign initial symbolic 
values to the variables that are involved in the incorrect variable reference errors. The  
errors will be reliably discovered by examining the output for the module since the incorrect 
variables will have symbolic rather than numeric values. T h e  incorrect variable references 
are clearly revealed in the symbolic output expressions which involve the variables. 
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Although symbolic testing is only reliable for one error which would not be reliably 
revealed by other testing techniques, there are six errors for which symbolic testing is a 
natural error discovery tool. Special values testing will discover most of the errors. This is 
because all six errors involve incorrect variable usage. If input arrays and variables are 
assigned distinct values the incorrect variable usage will be reliably discovered in five of the 
six cases. 

The following examples describe typical situations in which symbolic testing is reliable 
or unreliable. 

Example 5.-Symbolic testing reliable, structured testing on actual data unreliable, 
special values reliable. The code fragment in Figure 2 that was used in Example 2 contains 
an error for which symbolic testing is the appropriate testing method but for which distinct 
values are also reliable. Figure 4 contains sample symbolic output for a test in which the 
inner loop in the program is iterated twice. I t  is assumed that uninitialized variables are 
initialized to zero. The error is clearly revealed in the symbolic output for the fragment. 

Predicates Output 
a(l>>a(O) 4 1 )  
a(2) < a(1) a(2) 
a(2) < a(0) a(2) 

Figure 4. Symbolic output for sort program 

Example 6.-Symbolic functional testing reliable, no other techniques reliable. The  code 
fragment in Figure 5 is from the PL1-TEST program. The  correct statements which should 
be substituted for the corresponding incorrect statements are included in the code and are 
in italics. The  code fragment is from the section of the program that computes the quantities 
Q1 and Q3 from an ordered list of student scores in the vector GRADE( ). The size of 
the vector is #STUD. The  error causes incorrect output to be generated for Q1 and Q3 if 

GRADE(CEIL( #STUD/4.0)) # CEIL( #STUD/4.0) 

GRADE(CEIL( #STUD*3./4.0)) # CEIL( #STUD*3./4.0). 
or 

In general, it can be expected that these quantities will not be equal and the error would be 
discovered by testing on actual data. However, structured testing on actual data does not 
force the quantities to be unequal and it is therefore only 'probably' reliable rather than 
reliable for the error. 

IF DIVBY4 THEN DO; 
Q1 = (GRADE( # STUD/4) + GRADE(1 + # STUD/4))/2.0; 
Q3 = (GRADE(3* # STUD/4) + GRADE(1 + 3* # STUD/4))/2.0; 

Q1 = CEIL( # STUD/4.0); 
QI = GRADE(CEIL( # STUD/I.O)); 
Q3 = CEIL( # STUD*3./4.0); 
9 3  = GRADE(CEIL( # STUD*3./4.0)); 

END; ELSE DO; 

END ; 
Figure 5.  Fragment of PLI-TEST program with corrections 

The variable #STUD in the code fragment in Figure 5 is a loop upper bound for one 
of the loops in the functional module containing the fragment. When the module is tested 
using symbolic functional structured testing, #STUD will be assigned a small value 
(1 or 2) in order to cause the iteration of the loop the appropriate number of times during the 
symbolic evaluation of the module. Assume that the elements of the array GRADE( ) are 
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assigned symbolic values constructed from the name of the array (i.e. ‘GRADE(l)’, 
‘GRADE(2)’, etc.). Figure 8 contains the symbolic functional output for Q1 and Q3 which 
is generated by one of the paths through the module when the module is tested using 
symbolic functional testing. The output for both the correct and incorrect versions of the 
program in included. 

Q1 = 1 
Q3 = 2 

(a) Incorrect program 

Q1 = GRADE(1) 
Q3 = GRADE(2) 

(b) Correct program 
Figure 6. Symbolic functional output for  correct and incorrect versions 

of TEST program fragment 

Example 7.-Specifications requirements reliable, all other methods, including symbolic 
testing, unreliable. The error which is described above in Example 4 is not reliably dis- 
covered by symbolic testing or by any of the other program analysis techniques except 
specifications requirements. 

Example 8.-Symbolic testing reliable, interface analysis reliable, structured testing on 
actual data unreliable. In this example an error is described for which symbolic testing is 
reliable but for which some other kind of technique is perhaps more natural or appropriate. 
The specifications for the PL1-TEST program specify that the PERCENTS weightings 
for past exams are to appear in columns 11-15,16-20, ..., 56-60 on a special 
test weights input card record. The code which is supposed to read in these percentages 
appears in Figure 7. It is in error because it starts reading from column 6 instead of 1 1. 

GET SKIP FILE(SYS1N) EDIT( #EXAMS, (PERCENTS(1) DO I = 1 T O  10)) 

Figure 7. Incorrect input code fragment 
w), ~ 0 ) ~ ( 5 , 2 ) ) ;  

The program containing this error prints out, as part of a report, the percentages which 
it has read as input. When the program is symbolically evaluated the output values will be 
symbolic descriptions of card record fields which, presumably, can be compared with the 
specifications and noticed to be in error by the programmer. The difficulty with this 
approach is that when card column numbers are used as symbolic input values it is very 
difficult to read symbolic output, which will consist of expressions in card column numbers. 
This may cause errors to go unnoticed which would be easily detected if some more 
mnemonic type of symbolic input was used. A more appropriate method for revealing errors 
of this type would be to use a special interface analysis tool which compares input specifica- 
tions with input statements. This will allow the programmer to assign arbitrary symbolic 
values to input variables without accidentally hiding the presence of interface errors. 

Automated test data generation 
(i) Feasible path selection. The results in Table I1 indicate that symbolic evaluation 

would be useful for eliminating infeasible paths during actual data testing for four 
of the six programs. In  all four of these programs the functional modules at the 
lowest level of abstraction have a large number of paths which cause loops to be 
iterated less than or equal to two times and only a small number of these paths is 
feasible. Symbolic evaluation can be conveniently used for eliminating the infeasible 
paths through the low level functional modules. 

In  the four examples for which symbolic evaluation would be useful for feasible 
path selection, very simple methods are sufficient for determining the feasibility of 
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the associated systems of predicates. In all four cases it is sufficient to check the 
consistency of pairs of predicates which involve only constants and the same, 
single variable. A symbolic evaluation system like DISSECTS is ideally suited to the 
task of determining the feasible paths through a functional module and of generating 
descriptions of the paths. 

In  two of the six examples symbolic evaluation is not required for eliminating 
infeasible paths during structured testing. In  both cases the functional modules at 
the lowest level of abstraction have very few infeasible paths and there is no advantage 
in having an automatic system to eliminate them. 

In  all six examples symbolic evaluation is either difficult to use or not required for 
determining the feasible paths through functional modules which are not at the 
lowest levels of abstraction. Suppose that a path P through some module M contains 
an abstract single statement S which consists of a functional module at a lower level 
of abstraction. In  order to determine the feasibility of P it is necessary to determine 
if there is a subpath through S which makes P feasible. If S contains loops it may 
be only partially decidable whether such a subpath exists. If the search through the 
subpaths of S is limited to subpaths which iterate loops less than or equal to two 
times then the whole process of carrying out the structured testing of M degenerates 
to carrying out the structured testing of M and S taken together as a single module. 

(ii) Assisted test data generation. In  all four of the examples for which symbolic evalua- 
tion would be useful for determining the feasible subpaths through a functional 
module, the symbolically evaluated systems of predicates for the subpaths would be 
useful to the programmer for generating test data for functional structured testing. 
In one of the four examples the control structure of the functional modules is simple 
enough that it would be easy for the programmer to generate test data for a feasible 
subpath from a simple listing of the conditional statement branches in the subpath; 
symbolic systems of predicates are useful but not necessary. If symbolic evaluation 
is used for feasible subpath selection then the systems of predicates for the feasible 
subpaths are available as a side-product of the feasibility analysis. There is no extra 
cost involved in using systems of predicates to assist the user in test data selection 
rather than some simpler kind of path information. 

When a program is tested using integrated structured testing it is necessary for the 
programmer to construct tests that cause selected subpaths through functional 
modules to be traversed when the program is executed on those tests. There are two 
possible ways of using symbolic evaluation to assist the user in generating test data 
for integrated testing. The first is to use it to generate symbolic systems of predicates 
for complete program paths. In order to do this it is necessary to construct feasible 
partial paths which go from the beginning of the program up to the beginning of the 
selected subpaths through functional module and other partial paths which go from 
the ends of the subpaths to the end of the program. There is no obvious way of 
automatically selecting feasible partial paths that would be consistent with selected 
subpaths through functional modules. It is likely that the task of selecting the 
partial paths that are needed to test selected subpaths would be left to the pro- 
grammer. 

The second way in which symbolic evaluation could be used to assist the pro- 
grammer during integrated structured testing is to restrict its use to the generation 
of symbolic systems of predicates for selected subpaths through functional modules 
and not to use it to generate predicates for complete paths. In order for the second 
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way of using symbolic evaluation to be useful it would have to be possible for the 
programmer to generate program test data directly from subpath systems of predi- 
cates which would cause the subpaths to be traversed when the program was executed. 

In the examples that were studied it would be easy for the programmer to generate 
test data by hand, given the systems of predicates for module subpaths. It would be 
tedious and time consuming for him to have to construct the partial paths needed to 
complete a module subpath. In  all four of the examples for which symbolic evalua- 
tion would be useful for generating test data for functional structured testing it 
would also be useful for generating data for integrated structured testing. For both 
types of testing it would be sufficient to generate systems of predicates for subpaths 
through functional modules rather than predicates for complete program paths. 

(iii) Automatic test data generation. The use of symbolic evaluation for automatic genera- 
tion of test data was not found to be useful for any of the sample programs. There 
were several different reasons for this. In  some cases, the symbolic output that would 
be generated during feasible path selection is more revealing than output from 
actual data and there is no point in carrying out the execution of the program on 
actual data. In  other cases, it is important to consider the use of special values rules 
during test data generation and it is more convenient to let the user do this, assisted 
by the systems of predicates for program paths and subpaths. In  one program 
(COBOL) it is trivial for the user to generate test data for a path given the sequence 
of branches along the path and there is no need for the use of symbolic evaluation. 

CONCLUSIONS 
The  results described in this report are for a small sample of programs. Different patterns 
may be demonstrated by other sets of examples although it is likely that this will only be 
different for different types of programs. Continuing research will include the analysis of 
additional programs. Plans have been completed to carry out a study of numerical analysis 
programs in order to determine if this type of program generates different kinds of results 
from those described above. 

The  basic research methodology used in the project involved the evaluation of testing 
strategies by determining which errors would always be discovered by the strategies when 
they were applied to a program containing known, naturally occurring errors. Experience 
with the project indicates that this is a sound way to evaluate test strategies. An alternative 
approach is described by Hetzel.l* In  his thesis research Hetzel carried out a number of 
statistical experiments in which different groups of programmers used three different testing 
and program analysis techniques to debug three programs containing known errors. 
Hetzel’s approach is suitable for the analysis of ill defined techniques like ‘code-reading’ 
and ‘specifications testing’. The  approach which is described in this paper is more applicable 
to well defined rules like structured testing and interface analysis. These well defined 
techniques do not require any selective judgement on the part of the programmer and their 
reliability can be analysed without the need for statistical experiments. The  approach which 
was used in this paper is heavily oriented towards the discovery of new testing rules like the 
special values and anomaly analysis rules described in the Research methodology section. 

The  most important result of the project was the clear indication that no one program 
analysis technique or program testing strategy should be used to the exclusion of all others. 
Some types of errors are more readily discovered by one technique, such as anomaly 
analysis, and others by different techniques such as structured testing, refined by special 
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values. T h e  project can be viewed as a pilot study of the effectiveness of program testing 
and program analysis methodologies. T h e  results of the project are encouraging and imply 
that a larger, more comprehensive project should be carried out, modelled along the lines 
of this study. T h e  goal of the larger project would be to provide extensive guidelines for the 
design of a comprehensive set of testing techniques and program analysis tools. 

I n  the experiments with the six sample programs the use of symbolic testing resulted in an 
increase in reliability of 10-20 per cent over the use of structured testing on actual data. 
These figures agree with those reported in Reference 5. This  increase is reduced to 3-4 
per cent if structured testing is augmented with other program analysis and testing 
techniques such as special values and interface analysis. I n  an integrated system of analysis 
and testing techniques, symbolic testing would be a ‘natural’ error discovery method for 
10-20 per cent of the errors in the sample programs even though some of these errors 
would also be reliably discovered by other methods. 

I n  addition to the small absolute increase in reliability which is obtained when symbolic 
testing us used, symbolic evaluation is useful in other ways in the testing process. Symbolic 
evaluation was very useful in four of the six sample programs for eliminating infeasible 
subpaths from the sets of subpaths through functional modules and for generating descrip- 
tions of the data causing the subpaths to be followed. 

Experience with the examples that were studied indicates that symbolic integrated testing 
is more difficult to use than symbolic functional testing. Symbolic integrated testing requires 
that the user carry out symbolic tests of complete program paths which contain selected 
subpaths through individual functional modules. This  requires that the user construct 
partial paths which lead up  to and are consistent with the selected subpaths, and partial 
paths which lead from the functional module subpaths to the end of the program. The  
difficulties are similar to those that are encountered when symbolic evaluation is used to 
generate test data descriptions for integrated testing on actual data. T h e  problems are 
compounded when symbolic integrated testing is applied to functional modules which are 
not at the lowest level of abstraction. 

I n  general, it was found to be difficult to apply symbolic evaluation to all but the func- 
tional modules at the lowest level of abstraction. T h e  results of the experiments with the 
six examples indicate that in an integrated testing system the application of symbolic 
evaluation should be limited to low level modules and can be used to carry out the following 
types of analysis : symbolic functional testing, elimination of infeasible subpaths through 
functional modules and generation of symbolic descriptions of the tests that will cause 
selected module subpaths to be traversed. T h e  descriptions of the tests that cause selected 
subpaths to be traversed can be used to assist the programmer in generating test data both 
for functional and integrated structured testing on actual data. I n  the six examples that 
were studied there were three errors that would be discovered by symbolic integrated testing 
but not symbolic functional testing. Two of the three errors would also be discovered by 
integrated testing on actual data and the third by special values testing so that, at least for 
those examples, there would be no loss in reliability in a system which restricted symbolic 
evaluation to the three types of analysis listed above. 

Continuing research on symbolic evaluation will include a survey of symbolic evaluation 
techniques and an analysis of the cost of symbolically evaluating functional modules. These 
results will be used, together with the results of the research project described in this report, 
to help determine if the increase in reliability and the increased ease in carrying out struc- 
tured testing that results from the use of symbolic evaluation is worth the extra cost that 
would be inci rrred in including a symbolic evaluation capability in an integrated testing system. 

27 
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