
Error Models and Software Certification

William E. Howden
CSE, UCSD

La Jolla, CA, 92013

Abstract- An error-based approach to certification is
described. A classical theory of error is reviewed and a
software interpretation of the theory is developed. The
interpretation suggests a strategy for testing and analysis.
The strategy was evaluated by comparing its potential
effectiveness with that of certification standards based on
individual methods.
 Keywords- testing; analysis; error model; expertise;
method; certification.

I. INTRODUCTION
 The root causes of failures are viewed as errors that are
made during one or more phases of development. If a
general model of software errors could be developed, then
it may feasible to develop a certification foundation based
on the model.
 The experimental approach that was followed was to
apply a well-known, generic human error model [1] to
software defects. The analysis was restricted to this
model. It is beyond the scope of the paper to consider the
extensive work on alternative error models, cognition, or
related topics such as learning theory. Space also restricts
the discussion of, and inclusion of references to, the large
corpus of other work on certification, testing, and analysis.
 The paper begins with an abbreviated description of the
generic error model. This is followed by the introduction
of a software-oriented interpretation of the model. The
interpretation was used to develop an error-based strategy
for testing and analysis that included an integration of both
informal methods such as test and analysis checklists, as
well as well as more "formal" methods such as coverage
testing and static analysis.
 The error-based approach was applied to a collection of
known defects, examples of which are included. For each
of the defects, the effectiveness of twelve well-known
methods was evaluated. The methods consisted of: black-
box, branch coverage, mutation, model-based, random and
bounded exhaustive testing, and informal reviews, pair-
programming, static analysis, formal verification and
model-checking. Their effectiveness was compared to that
of the error-based strategy.
 In order to properly investigate the error-oriented
strategy it was necessary to have examples of defects for
which the originating errors could be determined. The 19
members of a graduate class in software testing and
analysis, which included masters students from industry, as
well as doctoral students engaged in advanced research,
produced examples of errors that they personally

experienced. This resulted in a set of 38 defects, from 36
programs, which ranged from student projects to industrial
products such as cell-phone systems. For each of these
defects, the students estimated the effectiveness of both the
traditional methods and the error-oriented approach.

II. REASON'S ERROR MODEL
 The experiment used the generic error model described
by Reason in Human Error [1]. Reason describes a model
that divides errors into three broad classes: slips, rule
errors, and knowledge errors. Rule errors are further
subdivided into bad rules and rule misapplication.
Knowledge errors are subdivided into inaccurate mental
models, and limited-workspace. Additional subcategories
are described of which the prospective memory error
subclass is included here.
 A slip is an error similar to a slip of the tongue. It occurs
when a correct "solution" to a required action has been
formulated but a slip is made in its execution. In this
context, the human is performing at the skill level, in
which there is no conscious deliberation.
 Rules are considered to be pieces of knowledge of the
form "if condition then do action". They are established
solutions that are repeatedly reused. Bad rules correspond
to bad solution techniques that are wrong and need to be
unlearned. Rule misapplication can occur in different
ways, such as failure to satisfy all of the condition part, or
incorrect application of the action part. It is noted that not
all models include rules, a fact that is discussed by Reason
in his book.
 Knowledge-based errors are associated with the more
laborious parts of problem solving, in which the solver has
to resort to step-by-step reasoning from first principles.
Inaccurate or incomplete mental models correspond to
errors resulting from ignorance. Limited-workspace errors
are caused by the limited "bandwidth" of the human brain,
which can only simultaneously consider a small number of
things at once. Prospective memory failures refer to the
situation in which there had been a conscious intention to
do something, but the resolution was lost. In addition,
Reason discusses violations. These occur when the solver
knows that some action may not be appropriate, but for
various reasons, such as the press of time, does it anyway.
 Space limits a more detailed description of the model.

III. SOFTWARE INTERPRETATION OF REASON'S MODEL
 For each of the different kinds of errors in the model, a
software interpretation was developed. Examples are

given for the error classes from the set of 38 defects. For
each error class the application of appropriate test and
analysis methods is briefly discussed. In some cases, an
example could have been associated with more than one
error class, and this is noted.

A. Slips
 Simple manifestations of this kind of error include
accidentally using the wrong variable name, or typos
involving the wrong arithmetic operator. At a more
abstract level, there may be very similar kinds of
alternative actions and the wrong one is accidentally
substituted. Associated methods include prevention
techniques such as standards for naming variables that will
make it more difficult to confuse them. Detection
techniques include type-checking, which may detect the
use of the wrong variable or operator. There was one
example of a slip.

 a) Robot hand: The example concerns a robot hand
program. If a command is made to manipulate an object,
the program is supposed to move the hand into a goal
position. It does this by iterating a sequence of small
moves, each followed by a measurement of the new
position. The defect occurred because the programmer
accidentally used the initial position variable rather than
the updated position variable while doing the updates. It
was recorded that the programmer simply forgot the
meaning of the variable name, a little stronger than a slip
in which the substitution is subconscious (and for which
variable naming would have been an effective prevention
technique), so this problem could also be classified as a
limited-workspace error (see below). From a limited-
workspace point of view, tests based on input domain
modeling, as described below, were judged to have been
an effective detection method. A type distinction between
the immutable and updatable variables would also have
worked

B. Rules
 In the context of software development, a rule can be
considered a piece of stored knowledge on how to
accomplish a program construction task. For example, at
the lower, programming/detailed design level, the
programmer knows how to translate informal solution
concepts such as "consider an entity to be a set of items
and then repeat over the set", or the "means for stopping
the repetition", into code constructs such as arrays, loops,
and loop headers. At a slightly higher level of abstraction,
rules include programming techniques, or idioms such as
scanning a sequence until a special marker is seen. We
refer to this example as the end-of-data-marker, or caboose
rule/technique. Rules also include classic generic
programming techniques such as producer-consumer,
protocol and reader-writer.

 1) Bad rules: Bad rule errors involve the use of bad
rules, as opposed to misapplied good rules. One kind of

bad rule involves the use of the wrong programming
language construct. This occurs when the programmer has
the wrong idea of what it accomplishes. A general method
for dealing with errors like this is training. This includes
the maintaining, by programmers, of their own personal
mistake checklists. Periodic review may be necessary to
avoid repeating the same error. The two examples of this
kind of error, both of which could become documented
learning experiences, included the following
 a) Shallow array copy: It was necessary to create
multiple instances of an array data structure. The
programmer used the C+-language "=" operator to create
new instances from old ones in order to save having to re-
initialize it with common data. But this is a shallow copy
operation, and the new copies are simply pointers to the
original copy.

 2) Misapplied rules: These errors occur when a rule-
based idea for part of a solution is incorrectly translated
into the corresponding code or design fragment. In some
examples, several rules were simultaneously active and the
problem involved an interaction between the rules. The
dominant testing and analysis method in the suggested
error-oriented approach for rule errors is the use of
checklists. The lists contain the names of programming
and design rules. They may also contain the names of
risks associated with rules. The critical assumption is that
the expert tester, focusing on individual rules, will be
better able to construct tests that reveal possible
misapplication. For example, experienced programmers
know that the risks of using producer-consumer themes
include the possibility of the producer overtaking the
consumer, resulting in overwriting the buffer that is used
to pass data. This focus on a producer-checklist item leads
to the use of a review or of tests that address this
associated risk. Alternatively, preventative run-time
checks can be made in which the status of the buffer is
monitored by the producer.
 Errors in the application of rules may involve limited-
workspace problems (discussed below) so that limited-
workspace methods such as black-box testing may be
effective. In this case, focus on the rule identifies the local
domains over which black-box can be effectively applied.
Rule errors were one of the more common kinds of errors
in the sample set. Two examples are given here.

 a) List of best-match digits: In this example, the
caboose rule was misapplied. The problem occurred in a
program which finds the best matches for a character from
a set of samples. The matches are stored in a best-choices
vector. The error occurs when the number of equal
matches for a digit is equal to the length of the vector, so
that no end-of-stream marker is inserted in the sequence of
tied matches stored in the vector. It was overlooked by the
programmer/designer when considering different possible
outcomes. When no end-of-data marker is inserted, the
program attempts to go beyond the end of the vector. The
error-oriented tester is guided by the meaning of the rule

names in checklists to consider the common cases in which
their instantiation could fail. In this case, it can be
expected to include the occurrence of an empty sequence,
a maximal sequence, or one in which the marker is
missing. Tests of the second type reveal the problem.

 b) Parser not working fast enough: This example
involved a client process that accepts a command which it
hands off to a parser, and then to a worker for processing.
The worker does not copy the parsed command but works
with its parsed source directly. This means that if the
parser is given a subsequent command for processing, the
new command could erase the previous parsed command
before the worker has processed it. In addition, when the
second command is parsed and a worker assigned, there
could now be two workers working on the same parsed
command, so the command could be performed twice.
This could have also been classified as an inaccurate
mental model error (see below) but the programmer
indicated knowing about the possibility but overlooking it
in the drive to produce an initial solution. It contains an
example of the use of the producer-consumer design rule.
 Focused consideration of the producer-consumer aspect,
possibly in a post-construction review phase, will prompt
the consideration of risks such as the producer overwriting
the buffer before the consumer has finished with it. This
could result in detection of the defect during informal
program review. Because of the difficulties of
constructing tests in a multithreaded application, it may not
be possible to easily provoke this failure, but the
consideration of its possibility, prompted by the checklist
key word, was judged to effectively deal with the potential
problem through the use of run-time checks in the code.

C. Knowledge-based Errors

 1) Incorrect or inaccurate model of the problem space:
These errors often involved a lack of correct information
about some "other" component which was not constructed
by the programmer/designer. Many of these errors can be
described as false assumptions about an interface between
two components.
 The prominent method for this kind of error is to identify
interfaces and then consider assumptions made about the
interface. The next step is to examine the specifications
"across" the interface, or test the assumptions when the
specifications are not available. In the case where the
testing is being done by the programmer, the explicit
assumptions will be known. When it is being done by a
tester who was not the programmer, and explicit
assumptions are not documented (e.g. in comments), the
tester needs to reconstruct potential assumptions.
 This was also one of the more common error types seen
in the sample. Three examples are given.

 a) Too many filters: This example occurs in a program
that sends an SQL request to a DB server. Unknown to the
programmer, if a request contains more than 1000 DB

filters they are simply ignored and all the data is returned.
This is a discoverable assumption, based on the property
"number of items". This is an interface that should be
checked with specifications or, if these do not exist, by
testing.

 b) Commas not processed: In this example, one
component calls another component to process some data
and return the result. More specifically, the application
calls a parser for CSV files. The programmer depended on
an explicit assumption that the parser recognized quotes
for embedded commas that should not be treated as
separators. This led to mis-parsed files, leading to
subsequent failures. The programmer indicated that this
was an explicit (and as later found out) false assumption.
In this case, if specifications were not available for post-
construction examination, then black-box input domain
testing would work.

 c) Too many credit card items: In this example, a
customer payment system uses a website that does
authorizations. The programmer/designer did not know
that the website limited transactions to 20 items. If more
are sent, the site returns a confusing message saying that
the submitted total does not match the sum of the
individual items. This was a discoverable assumption,
based on the number of purchased items limit. It could
have been checked and confirmed with testing. Protection
against unchecked values could be implemented with an
invariant assertion at the point of the call to the third-party
component.

 2) Limited-workspace: This was the most common
error. For all of the examples in this section, the
programmer/designer reported that a limited-workspace
error had occurred as opposed to, for example, an
inaccurate mental model or a rule violation. There were
just too many things going on to accurately keep track of
them all. In a limited-workspace error, programmers
typically reported that they overlooked something that, at
some level, they "knew about". For example, in the case of
a variable-overflow-limited-workspace error, the problem
was not due to ignorance or complexity but (unavoidable)
lack of focus. The suggested remedy is to use post-
construction testing and analysis phases that can focus on
each of these aspects individually, evaluating them for
correctness. Simply focusing on potential overflow
situations after construction when it can receive undivided
attention may be enough to evoke the consideration of
effective overflow-revealing methods. Two focus-
facilitating approaches to the prevention or detection of
limited-workspace errors are the use of model-based
testing and iconic errors.
 In the error-based paradigm, standard black-box testing
is interpreted as an error-based method in which the
separate, undivided focusing of attention on different
program aspects is facilitated using an input model. A
typical input model decomposes an input domain into

"functionally equivalent" subcases. This allows the tester
to concentrate on each subcase in turn, to see if it is
correct. The input model also more clearly identifies
"edge" or "oddball" cases.
 Depending on the application, different kinds of standard
models, other than simple input equivalence partitioning,
may be appropriate. Examples include activity diagrams
(flow charts), and decision, state and bounded-
combinations models. In each case, the goal is the same:
to assist the programmer in identifying and then focusing
on each of a set of different aspects of the code. If
modeling is carried out before hand, errors may be
identified during pre-construction phases. Post-
construction, it leads to techniques such as model-based
testing.
 The goal in model-based testing is to assist the
consideration of not only separate aspects of the code, but
the way they work together. An alternative that is
available in certain situations is the use of iconic errors,
which capture the essence of certain kinds of limited-
workspace errors in a reusable form. Examples include:
logical memory leaks, overflow, deadlock, bookends,
round-off, and data race errors. The idea is that the code
is examined for the potential occurrence of the error,
leading to the testing for the errors in the context of the
given program. The following five examples describe a
variety of limited-workspace errors. In each case the
programmer/participants in the study judged that testing
based on models and/or iconic errors would have been an
effective detection method.

 a) Two classes allowed at once: This example involved
a system that allows students to register for classes. It
incorrectly allows the situation where a student registers
for a class that is held at the same as a class that has been
previously registered for by that student. In this error, a
special subcase was excluded from consideration. The
programmer reported overlooking this possibility.
 Error-directed testing in this case might best be helped
with an input model specification. In this case, inputs
include the current system state plus the new request.
Standard invalid input tests based on an explicit input
model (as opposed to the incomplete mental model of the
programmer) would reveal the defect.

 b) Bad rendering: In this example, a 3-D rendering
routine failed to work for a certain kind of object. For this
kind of object, a shading routine was called with the wrong
parameters for that subcase. An activity diagram model
constructed either during design or after code construction
would have laid out all the different aspects of the code for
more focused analysis or testing. The application of
standard black-box testing to the different subcases in the
model would have detected the problem.
 c) No profile updates allowed: In this case a job search
data base was being constructed which was accessed by
email addressee keys. The system correctly allowed the
insertion of a new searcher record, but incorrectly

disallowed updating of existing records. The problem was
the programmer had failed to distinguish the insertion from
the update case, leading to attempts to update an entry with
an INSERT rather than an UPDATE command. The
programmer reported knowing about the alternative, but
simply overlooking it. Several models would have
allowed a retrospective consideration of alternative flows
in the solution, such as an abstract program activity
diagram or a user state model. The models would have
included the ability to update as well as insert, and model-
based testing would have led to the discovery of the
program defect.

 d) Remember scripts forever: A stock-trading system
recorded scripts of system usage. The system did not
delete the scripts, neither after some period of time nor
after a max limit was reached. The system ran fine until
certain state parameters made their existence known in a
failure. This was a latent logical memory leakage error. In
this case, focus on the possibility of this iconic error will
involve the consideration of places where memory is
allocated. Analysis (or associated testing) will reveal the
overlooked parts of the program solution corresponding to
the missing code.

 e) Rest of the value missing: This was a word search
program which required the use of a merge-sort routine. A
division of n by 2 was needed. It was implemented with
an integer n/2 division, resulting in the loss of an element
each time n was odd. In this error, certain computational
subcases were ignored, Tests based on a roundoff iconic
error checklist item would reveal the error. The tester
would look for potential occurrences of roundoff, and then
using knowledge of corresponding expressions or code in
the given program cause the appropriate tests to be
executed.

 3) Prospective memory: Two examples are given here.
Both are errors of omission. In prospective memory errors
the programmer/designers were aware of something that
they consciously intended to do, but then forgot.
Forgetting to do something in the sense that it never
occurred to the programmer in the first place is different,
and could be a limited-workspace error. Prospective
memory error-oriented methods include mementos and
bookends. In mementos, a programmer uses comments to
document intentions when they occur, which are then later
checked for satisfaction. Bookends-focused testing and
analysis, described above in connection with logical
memory errors, involves expected pairs of operations or
events in which one part of the pair has been left out.
Bookends testing and analysis is carried out to confirm that
for each bookend, there is a matching pair.
 a) Missing table unlocks: This example involves a
database server which has a thread pool for answering data
base requests. The threads put a lock on a table when
accessing it for a delete, but the programmer forgot to put
in the intended unlock. The missing unlock causes the

system to grind to a halt. Mementos are the most direct
technique that could have helped. In the case of bookends
analysis and testing, the programmer judged that testing
and analysis which focused attention on this overlooked
action is likely to reveal the problem. Analysis and testing
for the problem is simplified by the fact that the
unmatched locks are not followed by unlocks on any path,
avoiding false positive problems due to infeasible paths.

 b) Ignoring return codes: In the second example, a cell
phone has an upload function that it can use for uploading
diagnostic files to the server. If a voice call is received
while this transmission is in progress, the upload is lost.
The cell phone programmer made a mental note to check
the return code of the uploading function, which would
have revealed the problem, but forgot. The memento
approach could be used here. A bookends approach would
try to match variable value definitions with uses. In this
case, it would reveal the there is no use of the defined
return code in the program on any path.

D. Violations
 Violations, in which the programmer knew to do
something but did not do it, or did something known to be
wrong, could theoretically involve anything. However, in
practice, it appears to involve programmers acting as
though they had an incorrect mental model or a limited-
workspace problem. This makes violation errors
approachable using the methods associated with those
other error classes. The samples included two violations.

 a) Cell phone logical channel degradation: In this
example, a cell phone communications program was
written in which it was assumed that if initial program
strength was strong enough, and it was possible to decode
the first of a potential sequence of logical channels, then
further communications actions could continue unchecked.
However, the programmer knew that physical strength
could deteriorate, and that channel decoding is influenced
by other factors such as volume of data. The programmer
reported acting as though holding an incorrect mental
model of the signal strength problem. In this case, there is
an interface between the receiver and transmitter of the
signals. Examination of assumptions across this interface,
resulting in their evaluation during testing and analysis
would have lead to discovery of the error.

 b) Web page button annotations too long: The second
example involves a web-based application. A web page is
displayed with buttons having annotations. The
annotations are dynamic, being supplied to the page-
rendering code at run time. The annotations are displayed
before their associated buttons. As a consequence, a long
annotation may push a button right off the page, making it
inaccessible to a user. In this case, the programmers
simply ignored what the web site designers had done,
including the problem that the design might have with
longer annotations. They could be interpreted as behaving
as though they had a limited-workspace problem. Limited-

workspace error testing would include the construction of
an input model for the page rendering code, with its
annotation text. Testing this over extreme values, e.g.
annotation length, would reveal the defect.

IV. EFFECTIVENESS
 The 19 programmers who supplied the 38 examples
documented the errors that led to the defects and evaluated
the potential effectiveness of both the error-based
approach, described in the previous section, and the 12
standard testing and analysis methods listed in the
introduction. For each of their defects, and for each
method, they asked themselves if the method would have
found that defect. Positive answers included both "yes"
and "probably." Consider, for example, white-box branch
coverage testing. If a program has the property that it
would fail whenever a branch was executed, then branch
coverage would force exposure and the answer would be
"yes". If the program was such that a failure would occur
whenever the branch was executed for some data, but not
others, but the data was the most likely to be chosen, then
the answer would be "probably". Descriptions of the
programs and the raw data for the experimental summary
are contained in an associated 182 page report. The results
were edited for consistency by the author.
 The results are less scientific than formal experiments on
a small set of programs over a small set of methods, such
as the classic work described in [2], but the approach was
necessitated by the scope of the investigation in which a
large set of methods is evaluated over a very wide range of
applications. Compensatory testing is defined to be the
combined application of all 12 methods. The idea is that a
weakness in one method may be compensated for, in some
undefined way, by another method. The reported
effectiveness of the 12 standard methods, of compensatory
testing, and of the error-based approach for the 38 defects
in the study is summarized in Table 1.
 The Table indicates that error-based testing and analysis
was deemed effective or probably effective for 35 of the
38 errors. This was followed by compensatory at 29,
black-box at 18 and BET (Bounded Exhaustive Testing) at
19. Random and model-based testing were good for 11
and 10 defects, and the rest were in the single digits.
Error-based testing was found to be a way of positioning
methods in the development process, providing a rationale
for their use, and improving their effectiveness by
directing and focusing their application. Consider black-
box testing. A standard approach in black-box testing is to
decompose the input domain into "functionally equivalent"
classes and to then test each of these, plus the
oddball/edge-cases. The error-based viewpoint improves
its effectiveness in the following way. Black-box is
generally applied to whole programs or program
components. The checklist items associated with rule or
workspace errors direct the application of black-box
testing to other aspects of the program that are not
immediately clear by looking at program interfaces, such

as implementation programming constructs.
 There were six examples where only an error-based
approach was judged to be potentially effective. A
common way in which error-based was effective on its
own was in situations where it would focus attention on
the possibility of rule misapplication or on the occurrence
of iconic errors. In these cases, the focus that is gained
from the associated keywords was judged by the
programmers to be necessary and sufficient for probable
defect discovery.

TABLE 1
METHOD EFFECTIVENESS

Method Yes Probably Total

Black-box 11 7 18
Branch Coverage 3 3 6
Mutation 4 5 9
Model Based 8 3 11
BET 16 3 19
Random 4 6 10
Informal Review 1 5 6
Pair Programming 6 6
Static Analysis 2 2 4
Dynamic Analysis 2 3 5
Model Checking 2 2
Formal
Verification 4 1 5

Compensatory 29
Error-based 27 8 35

 There were three cases where no method was judged to
be potentially effective. In one of these, there was
significant missing information. Two others involved
obscure properties of the code that were related to
peculiarities of the programming language.

V. CONCLUSIONS
 An informal evaluation of a broad range of defects
indicated that an error-based approach will provide a
stronger level of certification than one based on a single,
standard method. The strongest effect of the error-based
approach was found to be its focused attention on aspects
of a program that would otherwise have only been
analyzed indirectly or as parts of larger entities. The two
principal kinds of focusing mechanisms were checklists
and program models. Two kinds of checklists were
described. The first kind focuses on program constructs
such as array references and on design idioms such as
producer-consumer. The tester is expected to identify
potential risks associated with instantiations of these
entities and to construct corresponding tests or analyses.
The second kind of checklist focuses on risks such as
overflow or deadlock. In this case the tester is expected to
identify aspects of the program that have the potential to
produce such a risk, and to then construct pertinent tests
and analyses of those aspects.
 The checklist items in the study are generic, whereas

examples of the second kind of focusing mechanism,
program models, are application-specific. Program models
may be developed during specifications and design, but
could also be developed by the tester/analyst. Program
model components are not simply "covered", as in
traditional model-based testing, but are focal objects to be
individually tested and analyzed. As part of their focusing
role, the components of program models lead to more
precise test generators and validation oracles.
 The error-oriented approach suggests a certification
framework in which it is required that tests and analyses be
carried out for each of the different kinds of errors in the
error model. Because the program correctness problem is
undecidable, there can be no foolproof general certification
standard. In the case of the error-based approach,
checklists and program models may be incomplete, and
their instantiation and application may be imperfect.
Certification that is based on error-based testing and
analysis should, consequently, include the identification of
checklists and program models used in the evaluation.
 Because the error-based framework is informal, and
because the effectiveness of the included methods depends
on experience in their application, the approach would
benefit from relevant, systematic theory of expertise.
Work on natural decision making, such as that described
by Klein in [3], provides such a foundation. Decision-
making critical cues, for example, can be compared to
error-model checklist items. They provide a bridge
between the particulars of a program and the knowledge-
base of the expert. In addition, Klein's work incorporates
the possibility of improvement through experience and
variability based on context. It also contains guidelines for
the development and maintenance of expertise.
 Current work involves further refinement of the
approach, including its application to the testing of an
industrial real-time system.

VI. ACKNOWLEDGEMENTS
 Descriptions of the programs and the raw data of the
effectiveness analyses are contained in an associated
UCSD/CSE technical report. The authors of that report,
and the participants in the course and the experiments,
were: W. Howden, G. Cheang, M.G. Chin, X. Ding, B.
Emde, M.A. Fedder, S.R. Foster, R.M. Gehrer, L. Geng,
A.P. King, J, Lee, C. M. Louie, J.A. Meister, M. Mubin, I.
Mulic, A. Ravinagarajan, R. Valentin, H. Sabnani, A.
Vekataraman, and E.C. Yip.

REFERENCES
[1] James Reason, Human Error. Cambridge UK:

Cambridge University Press, 1990.
[2] V. Basili and R. Selby, Comparing the Effectiveness of

Software Testing Strategies, IEEE TSE, vol. 13(12):
1278-1296, December 1987.

[3] Gary Klein, Sources of Power. Cambridge MA: MIT
Press, 1999.

http://www.cs.umd.edu/~basili/publications/journals/J34.pdf�
http://www.cs.umd.edu/~basili/publications/journals/J34.pdf�

