
IEEE TRANSACTIONS ON COMPUTERS, VOL. c-24, NO. 5, MAY 1975

Methodology for the Generation of Program Test Data

WILLIAM E. HOWDEN

Abstract-A methodology for generating program test data is
described. The methodology is a model of the test data generation
process and can be used to characterize the basic problems of test
data generation. It is well defined and can be used to build an auto-
matic test data generation system.
The methodology decomposes a program into a finite set of classes

of paths in such a way that an intuitively complete set of test cases
would cause the execution of one path in each class. The test data
generation problem is theoretically unsolvable: there is no algorithm
which, given any class of paths, will either generate a test case that
causes some path in that class to be followed or determine that no
such data exist. The methodology attempts to generate test data for
as many of the classes of paths as possible. It operates by construct-
ing descriptions of the input data subsets which cause the classes of
paths to be followed. It transforms these descriptions into systems of
predicates which it attempts to solve.

Index Terms-Flowchart analysis, inequality solution techniques,
program paths, program testing, systems of predicates.

I. INTRODUCTION

T HE VALIDATION phase of the software production
process has received increasing attention in the last

few years (e.g., [1]-[3]). In the program verification ap-
proach to validation a program is mathematically proved
to be correct over its entire input domain. In the testing
approach a program is shown to be correct over a finite
subset of its input domain by evaluating the program
over that set. The verification approach is limited to
small programs. The testing approach is generally ap-
plicable and is likely to remain the most important soft-
ware validation tool.

Several programming tools have been built which
automate parts of the program testing process. Stucki
[4] and Brown et al. [5] describe systems which auto-
matically insert instrumentation statements into a pro-
gram. The instrumentation statements keep a record of
the branches and statements that are executed during
the testing of a program. Krause et al. [6] describe a
system for extracting a sequence of paths from a program
which "covers" each branch in the program. A scheme has
been devised by Paige and Balkovitch [7] for testing a

Manuscript received July 22, 1974; revised November 12, 1974.
The research described in this paper was carried out as part of the
McDonnell Douglas Astronautics program in the research and de-
velopment of program validation software and was funded by the
National Bureau of Standards.
The author is with the Computer Science Division, Department

of Applied Physics and Information Science, University of Cali-
fornia, La Jolla, Calif. 92037.

program against its specifications. Ramamoorthy et al.
[8] have constructed a system which checks a program
for anomalous statements and constructions.

This paper describes a methodology for the generation
of program test data. The methodology is a model of the
test data generation process and can be used to charac-
terize the basic problems of test data generation. It is
well defined and can be used to build an automatic test
data generation system. The methodology is general and
can be applied to programs in different languages although
it was designed with Fortran programs in mind.
The methodology decomposes a program into a finite

number of standard classes of program paths. A class of
paths is "feasible" if input data exist which cause some
path in the class to be followed. The methodology at-
tempts to determine which classes of paths are feasible,
and to generate a set of test cases which cause one path
from each feasible class to be followed. The general test
data problem is equivalent to the halting problem. An
algorithm which could determine the feasibility of any
class of paths would be capable of determining whether
data existed which would cause an arbitrary program to
halt. A complete standard set of test cases contains one
test for each feasible class of paths. The methodology
attempts to generate a large subset of a complete set.

II. GENERAL APPROACH
The methodology can be described as consisting of five

phases. The first phase analyzes a program and con-
structs descriptions of standard classes of paths through
the program. The second phase constructs descriptions of
the sets of input data which cause the different standard
classes of paths to be followed. The descriptions generated
by the second phase are implicit descriptions in the sense
that they do not explicitly describe a set of data in terms
of predicates and relations. They consist of the assign-
ments, loops, function calls, and branch predicates which
characterize the data causing the paths to be followed.
The third phase of the methodology attempts to trans-
form the implicit descriptions into equivalent explicit
descriptions. An explicit description consists entirely of
predicates and relations. In general, it is not possible to
transform any implicit description into an explicit descrip-
tion. The fourth phase constructs explicit descriptions of
subsets of the input data sets for which the third phase
was unable to construct explicit descriptions. The fifth
pha'se of the methodology generates input values which
satisfy explicit descriptions.

554

HOWDEN: GENERATION OF PROGRAM TEST DATA

III. GENERATION OF CLASS DESCRIPTIONS

A. Boundary-Interior Test Paths

There are a potentially infinite number of paths through
a program which contains loops. There are several methods
for choosing a finite number of these for testing. Little
theoretical or empirical work has been carried out to
justify the use of one of these methods in preference to
the others. The phase one process, which is described in
this section, uses the boundary-interior method for choos-
ing test paths. The basic idea of the method is to group
the paths through a program into a finite set of classes
of paths in such a way that a test of one path from each
class constitutes an intuitively complete set of tests.

In the boundary-interior approach to testing, it is as-
sumed that a complete set of tests must test alternative
paths through the top level of a program, alternative
paths through loops, and alternative boundary tests of
loops. A boundary test of a loop is a test which causes
the loop to be entered but not iterated. An interior test
causes a loop to be entered and then iterated at least
once. Experience indicates that both the boundary and
interior conditions of a loop should be tested.
The boundary-interior method separates paths into

separate classes if they differ other than in traversals of
loops. If two paths P1 and P2 are the same except in
traversals of loops they are placed in separate classes if

(1) one is a boundary and the other an interior test of
a loop;

(2) they enter or leave a loop along different loop
entrance or loop exit branches;

(3) they are boundary tests of a loop and follow differ-
ent paths through the loop;

(4) they are interior tests of a loop and follow different
paths through the loop on their first iteration of the loop.

B. Class Descriptions

The first phase of the methodology constructs program-
like descriptions of classes of program paths. Class de-
scriptions consist of branch predicates, assignment state-
ments, I/O statements, and "FOR-loops." The FOR-loop
notation is used to represent an arbitrary number of
traversals of a loop. The use of a FOR-loop may involve
the introduction of dummy variables into a program. The
complete set of class descriptions for a program can be
represented in the form of a description tree. Fig. 2 con-
tains the boundary-interior class description tree for the
program in Fig. 1. The leftmost path in the tree describes
the class of all paths which test the interior of the loop
in the program. The other paths are boundary tests.

C. Class-Description Generation Process

Phase one constructs the class descriptions for a pro-
gram by traversing its description tree. The structure of
the phase one process can be described as a recursive

1 READ N

2 IF N < 0 GO TO 10

3 M + 1

4 IF N = 0 GO TO 8

5 M + M * N

6 N - N -1

7 GO TO 4

8 PRINT M

9 HALT

10 PRINT -1

11 HALT

Fig. 1. Factorial program.

READ N

N0 N < 0

H *- I

N . 0 N= 0

M *-M *N

N N - 1

PRINT -1

HALT

PRINT M

HALT

Kl > 0

FOR 11 = 1 TO Kl

N 0

M +M *N

NN - 1

N = 0

PRINT M

HALT

Fig. 2. Description tree.

finite state automaton. The automaton described in Fig. 3
can be used for constructing the boundary-interior class
descriptions for programs in which all loops are properly
nested.
The automaton begins in the MAIN state. MAIN is used

for processing the main or top level paths through a pro-
gram. When a subloop is encountered the automaton
enters the ENTRANCE state. ENTRANCE reads through a
loop, searching for the loop's first statement. PATH follows
alternative paths through a loop. ITERATE constructs the
FOR-loop constructs which denote an arbitrary number of
traversals of a loop. The EXIT state exits from a loop. It
reads down paths from the first statement of a loop to
some exit branch out of the loop. Each of the states
PATH, ENTRANCE, and EXIT causes a recursion to take
place if it encounters a subloop during its processing.
When a recursion takes place the new automaton for
processing the subloop is entered at the ENTRANCE
state. BRANCH iS invoked when a conditional branching
statement in the program is encountered. It initiates the
processing of the program down each of the branches.
For branches which leave the loop currently being proc-

555

556

HALT LOOP L

(A;)

---SUBL00P --__-- --_
ESENTRANCE-

FIRST ,
STATEMENT SUBLOOP
OF L

BRANCH SUBLOOP
FIRST

// STATREMET \
OF L FIRST

BRNCH STATEMENT
OF L

BRANCH EXIT
- BRANCH

Fig. 3. State diagram for class description generation process.

essed, this will involve the return of control to some

previously interrupted automaton. Each of the automaton
states adds description statements on to the current class
description as it processes program source statements.

IV. IMPLICIT INPUT DATA DESCRIPTIONS

The predicates in a path, together with the input and
computational statements which affect the variables in
the predicates, form an "implicit" description of the
subset of the input domain which causes the path to be
followed. Phase two of the methodology constructs im-
plicit input data descriptions of the sets of data which
cause classes of paths to be followed. Fig. 4 contains the
implicit input data description for the interior test class
description in Fig. 2.
Phase two can be described in two parts. The first part

deletes the output statements from a class description
and replaces input statements by assignment statements.
Phase two will be incomplete for certain classes of input
statements which cannot be easily replaced by assignment
statements. Values read by a simple READ statement not
involving arrays can be represented by the dummy input
variables # 1, # 2, .. In Fig. 4 the input statement
"sREAD N" has been replaced by the assignment N <- # 1.
The second part of phase two deletes all "unnecessary"

assignment statements. It does this by reading backwards
from each predicate. As it reads back it constructs a list
of "predicate affecting"' variables. It uses these lists to
determine which assignment statements do not affect
predicates and can be deleted from a description.

V. TRANSFORMING IMPLICIT INTO EXPLICIT
DESCRIPTIONS

A. Partially Explicit Input Data Descriptions

Phase three of the methodology is a symbolic inter-
pretation process which attempts to evaluate and delete
the assignment statements and FOR-loops in an implicit

IEEE TRANSACTIONS ON COMPUTERS, MAY 1975

N + #1

N > 0

N 0

N N - 1

Kl L- 0

FOR I1 = 1 TO Ki

N. 0

N N - 1

N = 0

Fig. 4. Implicit input data description.

description. An assignment statement is evaluated by
substituting the current symbolic values of the inde-
pendent variables in the statement into the statement.
The expression on the right-hand side of the resulting
statement becomes the current symbolic value of the
variable on the left-hand side. Symbolic values are sub-
stituted for occurrences of variables in predicates and
relations. The process is similar to verification condition
generation for proving correctness.

It is not always possible to delete all of the assignment
statements from an implicit description. Phase three
usually results in the generation of a "partially explicit
description." A completely explicit class description con-
sists of a system of inequalities in input variables and
constants. The generation of completely explicit descrip-
tions is prevented by the presence of array references and
loops in implicit descriptions. Array references, for ex-
ample, have the property that they may stand for different
array elements depending on the values of the indices in
the references. If the value of an index in a reference can
only be determined at execution time, then the symbolic
interpreter may be unable to complete the evaluation of
statements containing the reference.
There are four classes of FOR-loop interpretation prob-

lems. The first three involve problems in interpreting
statements inside FOR-loops. The first involves the substi-
tution of values computed outside FOR-loops for variable
references occurring inside FOR-loops. Suppose that a
reference to a variable X occurs in a predicate or on the
right-hand side of an assignment inside a loop. Let Xo
be the value of X on entry to the loop. If X also appears
on the left-hand side of an assignment in the loop, then
the initial value X0 of X cannot be "brought into" the
loop, and the assignment of Xo to X outside the loop
cannot be deleted from the description.
The second class of problems involves the substitution

of values computed inside FOR-loops for variable refer-
ences occurring outside FOR-loops. Suppose that a variable
X is computed inside a loop and then referenced outside
the loop. If there is no closed form for the iteratively com-
puted value of X, then the value of X cannot be "brought
out" of the loop, and the FOR-loop cannot be deleted.
The third class of FOR-loop interpretation problems in-

volves the interpretation of "disjunctive" and "recur-
rence" statements. Suppose that a program contains a
loop L and that the conditional statement "IF P THEN

HOWDEN: GENERATION OF PROGRAM TEST DATA

X <- Y" occurs inside L. Each class description which is
constructed by phase one will contain a description of a

particular path through L and a FOR-loop which describes
all possible iterations of L. The FOR-loop will contain the
disjunctive statement (P A X <- Y) V -P. An assign-
ment which occurs as part of a term in a disjunctive
statement cannot be symbolically evaluated unless the
interpreter is able to determine the truth values of the
predicates in the statement. When the phase three inter-
preter encounters a disjunctive statement it marks the
values of the assigned variables in the statement as

"indeterminate."
In a recurrence assignment, the variable on the left-

hand side also occurs on the right-hand side. Recurrence
assignments can occur both inside and outside FOR-loops
and can be evaluated in the normal way when they occur
outside a loop. They cannot be symbolically evaluated
when they occur inside a loop.
The fourth class of problems involves the construction

of closed forms for loops and for iteratively computed
predicates inside loops.

Suppose that phase three were unable to find a closed
form for the loop in the implicit description in Fig. 4.
Then it would generate the partially explicit description
in Fig. 5. The assignment N <- #1 has been evaluated
and deleted and the symbolic value #1 substituted for
N in the predicates N > 0 and N 5-4 0. The assignment
N *- N 1 has also been evaluated. The symbolic value

1 - 1 of N cannot be substituted for occurrences of N
in the FOR-loop because N is assigned a value in the loop.
The assignment N 1 must be retained to de-

note the value of N on entry to the FOR-loop.

The loop in Fig. 4 can be replaced by the predicate
(N <0 V N > Kl 1) andtheassignmentN*-N Kl.

If phase three were able to find this closed form it could
carry out the substitution of a value for N into the closed
form expression and delete the remaining assignment
statements. The result would be the completely explicit
description in Fig. 6.

B. Interpretation Process
The phase three interpretation process consists of two

parts. In the first part assignment statements are evalu-
ated and an attempt is made to construct closed forms
for loops. Values of variables are substituted into predi-
cates and relations. In the second part unnecessary
statements and FOR-loops in the evaluated description
are deleted. The separation of evaluation and statement
deletion simplifies the problem of determining if an

assignment can be deleted from a partially explicit
description.
The evaluation part of the symbolic interpretation

process can be carried out in several passes. It can be
designed as a recursive, multipass procedure which
processes loops. Each time a subloop is encountered
during a pass over the loop currently being processed

the evaluation procedure is recursively reinitiated. In
the first pass over a loop the procedure constructs a

557

#1, 0

#1 0

N #1 - 1

Kl > 0

FOR I1 = 1 TO Kl

N 0

N N -I

N = 0

Fig. 5. Partially explicit description.
#1 > 0

#1 # 0

KI > 0

(#1 - 1 < 0 v #1 - 1 >K - 1)

#1 - 1 - Kl = 0

Fig. 6. Explicit description.

symbol table of the variables which receive values in
the loop. In the second pass it evaluates assignment
statements and substitutes values into predicates. The
evaluator uses the symbol table for a loop to determine
when a value of a variable can be "brought into" a loop.
The value of a variable cannot, in general, be brought
into a loop if the variable is assigned a value in the loop.
The evaluation procedure carries out a sequence of

symbol table and evaluation passes over a loop until no
further evaluation is possible. Two symbol/evaluation
passes appear to be sufficient for Fortran partially ex-
plicit descriptions. After the completion of the symbol
table and evaluation passes, the evaluation procedure
tries to find a closed form for the loop. It attempts to
find closed forms for the iteratively computed values
and predicates in the loop. When the closed-form pass
over a loop has been completed control is returned to the
interrupted pass of the next higher level call of the evalu-
ation procedure.
The deletion part of the interpretation process deletes

assignment statements which no longer affect predicates.
The deletion part of the interpreter works in the same
way as the deletion subprocess in phase two of the meth-
odology.

VI. EXPLICIT SUBSET DESCRIPTIONS

Each of the explicit and partially explicit descriptions
which are generated by phase three of the methodology
describes a set of input data. Phase four of the methodology
constructs explicit descriptions of subsets of the sets
which are described by partially explicit descriptions. It
constructs subset descriptions by traversing the FOR-loops
in partially explicit descriptions. Suppose that a partially
explicit description D contains a FOR-loop whose loop
upper bound is a variable K > 0. D describes the set of
all input data which satisfy the predicates in D for all
feasible choices of K. Loop-free descriptions of subsets of
D can be constructed by choosing particular values of K.
If D contains disjunctive statements, subset descriptions
consisting of simple sequences of predicates and assign-

IEEE TRANSACTIONS ON COMPUTERS, MAY 1975

ments can be constructed by choosing a particular term
in each disjunctive expression.

Fig. 6 contains a closed form for the FOR-loop in the
example in Fig. 5. Suppose that the evaluator had been
unable to construct the closed form for the FOR-loop.
Each choice of a nonnegative integer value for Ki cor-
responds to a different subset of the set described by the
partially explicit description. Fig. 7 contains the subset
description corresponding to the choice Ki = 0. The
description in Fig. 7 contains no FOR-loops and can be
evaluated to produce the explicit subset description in
Fig. 8.
A description is feasible if there are values in the input

domain which satisfy the description. Infeasible descrip-
tions describe the empty subset of the input domain.
Particular choices of values for loop bounds and terms in
disjunctive statements can result in the generation of
infeasible subset descriptions. If a partially explicit de-
scription is itself infeasible then all choices of loop bounds
and disjunctive terms will result in infeasible subset
descriptions. Phase four of the methodology attempts to
choose loop bounds and disjunctive terms in such a way
that the resulting subset description is feasible whenever
the original partially explicit description is feasible.
Two general techniques can be used to help ensure the

generation of feasible subset descriptions. The predicates
which constrain the loop bounds in a partially explicit
description form a loop-bound subdescription. The first
technique is to only choose loop-bound values which
satisfy loop-bound subdescriptions. The subdescription
constraining the loop bound in Fig. 5 consists of the
single predicate Ki > 0. If a subdescription's minimal
solution is always chosen then the resulting subset de-
scription will be as short as possible. The second technique
is heuristic search. If a subset description is infeasible
then a new subset description can be generated by choos-
ing new loop bound values or disjunctive terms. Different
heuristics can be used to guide the search through the
set of possible choices.

VII. GENERATION OF TEST CASES

Phase five is the test data generation phase of the
methodology. It divides standard classes of paths into
three sets: those for which it can generate test data,
those for which it can determine infeasibility, and those
for which it can neither generate test data nor determine
infeasibility. In general, since the test data generation
problem is unsolvable, this is the best that can be expected
from a test data generation methodology.
Phase five is an integrated collection of inequality solu-

tion techniques that can be applied to all of or parts of
explicit descriptions for Fortran programs. The tech-
niques are applied to complete descriptions to generate
test cases and to subdescriptions to check feasibility. If
a subdescription is infeasible then the description is in-
feasible. The phase five techniques are applied to both
the explicit descriptions which are generated by phase

#1 > 0

#1 . 0

N + #1 - 1

N = 0

Fig. 7. Partially explicit subset description.

#1 > 0

#1 # 0

#1 - 1 = 0

Fig. 8. Explicit subset description.

three of the methodology and to the subset descriptions
generated by phase four.

There is a wide range of difficulty in solving systems of
inequalities. Some solution techniques are effective in the
sense that they always produce solutions. Others are
partially effective: they produce solutions to some systems
of inequalities but not to others. Several of the possible
solution methods which can be included in phase five are
described below. Without extensive empirical investiga-
tion it is difficult to estimate how effective the techniques
will be and in what percentage of cases they will be
applicable.

Linear real-valued systems which do not contain func-
tions and array references with variable indices can be
solved using several different methods. Kuhn's method
[9] is a straightforward effective method. Linear pro-
gramming can also be used although it involves the extra
computational effort of finding minimal solutions. An
effective method developed by Singhania and described
in [10] can be used to produce solutions for nonlinear
systems in one variable of degree less than five. Experi-
ence indicates that a large number of the descriptions
generated by phases three and four can be solved using
these and other effective techniques. The explicit subset
description in Fig. 8 can be easily solved using a method
for linear systems in one variable.

Different partially effective methods can be used for
solving general nonlinear and integer-valued systems. In
the Kuhn's backtrack search method dummy real-valued
linear variables are substituted for nonlinear or integer
variables. Kuhn's method is then used to construct a
sequence of linear partial systems in which each system
has one or more fewer variables than its predecessor.
The process solves each of the partial systems in turn,
starting with the smallest system. At each stage it checks
to see if the partial solution satisfies the constraints of the
original system. If not it constructs a new partial solu-
tion. If no new partial solution can be constructed it
backtracks and constructs a new solution to the previous
partial system. The method is successful if it halts with a
complete solution that satisfies the original system.

In order to be able to generate test data for other than
the lowest level functions and subroutines in a program,
phase five of the methodology must be capable of dealing
with systems containing functions and subroutine calls.
In certain special cases a function call can be conveniently

558

OiDEN: GENERA4ION OF 'PHOGRAM TT DATA 559

replaced with an equivalent subsystem of inequalities
which does not contain the call. In other cases a variation
of the backtrack search method can be applied.

VIII. CONCLUSIONS

The methodology which is described in the preceding
sections can be used to generate data for certain classes
of programs which must be completely tested. The
boundary-interior approach to the classification of pro-
gram paths which is used in phase one permits the selec-
tion of a finite yet intuitively complete set of test cases.
The methodology can be used to build a system which
will automatically generate test data for some classes of
paths, determine the infeasibility of other classes, and
print out partially explicit descriptions of the input data
which causes the remaining classes of paths to be followed.
Many of the basic problems of test data generation

were discovered during the design of the methodology.
Several of these problems are mentioned in the preceding
sections. The boundary-interior method used in phase
one generates very large sets of classes of paths for large
or complex programs. Strategies must be used for choos-
ing a subset of this class or for generating smaller sets.
The recursive algorithm for generating boundary-interior
class descriptions requires that programs have properly
nested loop structures. The phase two procedures for re-
placing input statements by assignments will not work
for certain kinds of input statements. If these kinds of
input statements are not avoided then class descriptions
will be generated which cannot be prepared for interpre-
tation by the phase three symbolic interpreter. Complex
interdependent, nonintersecting program loops will result
in the generation of infeasible subset descriptions by
phase four of the methodology. The phase five inequality
solution routines will only be able to deal with simpler
systems of inequalities. Generation of test data cannot
be guaranteed for classes of paths containing branch
predicates that involve subroutines, functions, or non-
linear expressions in several variables. Phases one and
two of the methodology have been implemented. These
phases can be used to print out implicit descriptions of
the input data which cause standard classes of paths
through a program to be followed. Experience with this
system will provide empirical data on the complexity of
the more commonly occurring classes of paths and their
corresponding input data descriptions.
The first four phases of the methodology could be used

as part of a partial program correctness system. The
systems of inequalities generated by the first four phases
can be used to construct verification conditions for
particular paths through a program. In the boundary-
interior approach to partial program correctness the
correctness of one path from each standard class of paths
is proved. Phases one through four can be used to generate
simple loop-free path descriptions. The correctness of a
loop-free program path is considerably easier to prove
than the correctness of an entire program.

ACKNOWLEDGMENT
Several students at the University of California,

Irvine, participated in the research which is described in
this paper. R. Singhania carried out a survey of inequality
solution techniques. D. Mies patiently and carefully com-
piled statistics on the structure of Fortran programs.
S. Williams experimented with the boundary-interior
classification scheme.
The author would like to acknowledge the many helpful

comments of R. Stillman and S. Stewart of the National
Bureau of Standards. Dr. Stillman suggested the use of
a regular expression notation for the representation of
class descriptions. This suggestion influenced the design
of the algorithm for generating class descriptions.
The research described in this paper was associated

with a McDonnell Douglas Astronautics project in pro-
gram testing and was carried out under the supervision of
Z. Jelinski and L. Stucki of the Information Sciences
Division of McDonnell Douglas. The author wishes to
express his gratitude to L. Stucki and Z. Jelinski for their
encouragement and advice throughout the research.

REFERENCES
[1] B. Elspas, K. N. Levitt, R. J. Waldinger, and A. Waksman,

"An assessment of techniques for proving program correct-
ness," Comput. Surv., vol. 4, pp. 97-147, June 1972.

[2] W. C. Hetzel, Ed., Program Test Methods. New York: Pren-
tice-Hall, 1972.

[3] Proc. 1973 IEEE Symp. Computer Software Reliability, New
York, N. Y.

[4] L. G. Stucki, "Automatic generation of self-metric software,"
in Proc. 1973 IEEE Symp. Computer Software Reliability, 1973,
pp. 94-100.

[5] J. R. Brown, A. J. DeSalvio, D. E. Heine, and J. G. Purdy,
"Automated software quality assurance," in Program Test
Methods. New York: Prentice-Hall, 1972, pp. 76-92.

[6] K. W. Krause, R. W. Smith, and M. A. Goodwin, "Optimal
software test planning through automated network analysis,"
in Proc. 1973 IEEE Symp. Computer Software Reliability, 1973,
pp. 18-22.

[7] M. R. Paige and E. E. Bolkovitch, "On testing programs," in
Proc. 1973 IEEE Symp. Computer Software Reliability, 1973,
p.23-27.

[8] V. Ramamoorthy, R. J. Meeker, and J. Turner, "Design and
construction of an automated software evaluation system," in
Proc. 1973 IEEE Symp. Computer Software Reliability, 1973,
pp. 28-37.

[9] H. W. Kuhn, "Solvability and consistency for linear equations
and inequalities," Amer. Math. Mon., vol. 63, pp. 27-38, Apr.
1956.

[101 W. E. Howden, L. G. Stucki, and Z. Jelinski, "Final report:
Methodology for the effective test case selection, Part I,"
McDonnell Douglas Astronautics Rep. MDC G5301, Jan. 1974.

William E. Howden was born in Vancouver,
B.C., Canada, on December 8, 1940. He re-
ceived the B.A. degree in mathematics from
the University of California, Riverside, in
1963, the M.Sc. degree in mathematics from
Rutgers University, New Brunswick, N. J.,
in 1965, the M.Sc. degree in computer science

_.7 from Cambridge University, Cambridge,
England, in 1970, and the Ph.D. degree in
computer science from the University of
California, Irvine, in 1973.

IEEE TRANSACTIONS ON COMPUTERS, MAY 1975

In 1965 and 1966 he was with Atomic Energy of Canada, Chalk
River, Ont. From 1970 to 1974 he was a Lecturer in computer
science at the University of California, Irvine. Since 1973 he has
been a Consultant to McDonnell Douglas, Huntington Beach,
Calif., in software reliability. He is currently Assistant Professor of

Information and Computer Science at the University of California,
San Diego. His research interests are in software and system re-
liability and in interactive problem solving.

Dr. Howden is a member of the Association for Computing
Machinery and the British Computing Society.

Correspondence

A Method for Obtaining SPOOF's

SIU-CHONG SI AND ALFRED K. SUSSKIND

Abstract-A compatibility relationship on network paths is defined
in such a way that the maximal compatibles are isomorphic to the
products in the "structure and parity-observing output function"
(SPOOF), a subscripted Boolean expression for the network output
that uniquely specifies the network structure. For a given network,
the path compatibility relations are easy to find, as are the maximal
compatibles and hence the SPOOF for the network output. Because
the collection of all the path compatibility relations, conveniently dis-
played in matrix form, completely characterizes the network, the
compatibility matrix can be used for a variety of purposes.

Index Terms-Compatibility, maximum compatibles, logic-net-
work representation, SPOOF, sum-of-products form, diagnostics,
fault testing.

Several recent publications [1}-[3] have shown the usefulness of
modified Boolean expressions in the study of diagnostics for logic
networks. We will use here the particular form described in [1] and
called the structure and parity-observing output function (SPOOF).
The authors of [1] and [2] have shown how SPOOF's reveal the
effects of faults on network behavior, how they can be used to explore
fault-equivalence classes and to analyze test effectiveness and
efficiency, and how they allow understanding of the logical-structural
relationship created by redundancy. In [3] the authors have shown
how a complete fault-location test set for single stuck-at faults can
be obtained efficiently, i.e., by a nonenumerative procedure, through
the use of SPOOF's. The authors have also shown how tests for
"logical" short-circuit faults (i.e., unintended connections between
signal leads that behave like a wired AND or OR) or "regional faults"
(i.e., faults that alter the function of some part of the network in
an arbitrary but specified manner) can be derived from the asso-
ciated SPOOF. In short, tests for any fault that can be modeled in
Boolean algebra can be obtained by manipulations of SPOOF's.
When the subscripts in a SPOOF are removed, there results what
has been called in [4] the E-expression which, as shown there and
in [53, can be used for efficient generation of multiple stuck-at
fault-detection tests.
As yet, the use of SPOOF's or E-expressions is not widespread,

partly because test-generation algorithms based on them are rela-

tively new. In addition, it is laborious to find the SPOOF for a
network of even moderate size (say, 100 gates, 10 levels). Some be-
lieve that it is too costly to obtain the SPOOF of a moderately
complex network.
We present here a novel technique for generating SPOOF's, ex-

pected to lead to substantial reduction in computational complexity.
It may also be an efficient technique for finding E-expressions.
Moreover, the "compatibility matrix," introduced below, is a novel
means of network representation that has applications outside of
diagnostics.
Our starting point is the typical data base in a design automation

system: the interconnections between gates, the gate types, and the
labeling of input and output leads.
The new approach is based on a compatibility relationship between

network paths which we define in such a way that the maximal
compatibles are isomorphic to the products in the SPOOF. The de-
termination of the compatibility relationships for a given network
is shown to be easy, and, due to the work of others, finding all the
maximal compatibles is also straightforward. Furthermore, the
particular nested structure in which we display the compatibility
relations simplifies the task of determining the maximal compatibles.
This nested structure is also beneficial in storage management when
our approach is implemented in a computer program.

I. REVIEW OF SPOOF TERMINOLOGY

Whereas the elements of a conventional Boolean expression are
literals-input variables and their complements-the elements of
a SPOOF are "terms." A term is a literal together with a path list,
which denotes a path through which the literal reaches the output.
Path-list entries are lead labels, some of which may be complemented.
SPOOF terms may be manipulated according to all of the rules of

Boolean algebra. However, terms having different path lists are to
be considered distinct algebraic variables. The meaning of this rule
is that if J and K are distinct path lists, then all of the following are
algebraically irreducible: xJxK, Xj + XK, XJXK, and Xi + -X. As a
direct consequence of this rule, SPOOF's are topology preserving,
i.e., they reveal the network function as well as the network structure.

Fig. 1 is a gate configuration that realizes the function f = wx +
xyz. The leads have been labeled according to the scheme given in
[3]. Following the procedure in [1E, one obtains for the SPOOF's
of leads 7 and 8, respectively,

87 = W ,7X2,2a,6,7X2,2b,6,5a,7 + Wi,7X2,2a,6,7Y3,5,5a,7 + Wi,7X2,Fa,6,7Z4,5,5a,7

S8= X2,2b,5,ib,8Y3,5,5b,814,i,5b.8.

Manuscript received July 12, 1974; revised November 14, 1974. The SPOOF for the network output is the sum of the terms in S7
The authors are with the Department of Electrical Engineering,

Lehigh University, Bethlehem, Pa. 18015. and Sg, with lead 9 appended to every path list.

560

