

Software Test Selection Patterns and Elusive Bugs

William E. Howden

CSE, UCSD

howden@cs.ucsd.edu

Abstract

Traditional white and black box testing methods are

effective in revealing many kinds of defects, but the more

elusive bugs slip past them. Model-based testing

incorporates additional application concepts in the

selection of tests, which may provide more refined bug

detection, but does not go far enough. Test selection

patterns identify defect-oriented contexts in a program.

They also identify suggested tests for risks associated

with a specified context. A context and its risks is a kind

of conceptual trap designed to corner a bug. The

suggested tests will find the bug if it has been caught in

the trap.

Keywords Testing, patterns, defects, elusive, models,

design

1. Introduction

1.1. Background

Since there is no automatic procedure for selecting

tests that is guaranteed to reveal all of the defects in a

program, a variety of imperfect testing strategies are

used. It is common to use an empirical approach, to

select tests that have historically been found to be useful

in finding bugs.

The goal of the work described in this paper is to

develop a systematic general approach to testing that is

empirically based, and which can be used to discover

both common and elusive bugs. Elusive bugs are the

kinds that depend on some combination of conditions, or

which may require tests that incorporate some

knowledge of the program or application area under test.

1.2. Historical approaches

The two major historical approaches to testing are

black box and white (or glass) box testing. White box

testing, sometimes called structured testing, requires the

use of tests that cause each branch or other component of

a program to be tested. Black box, or functional testing,

uses tests that are based on a program’s specifications.

Black box testing usually incorporates a partition or

decomposition of a program’s input domain into subsets.

The idea is that the program is “the same” over each

partition subset, and it is sufficient to choose one test

from each.

The problem with white box testing is that elusive

bugs often do not show up until some combination of

actions is performed by a program. This means that
covering a program’s branches is not enough. It is

necessary, in an execution, to execute a particular

combination of branches. In other difficult cases, it is

not so much the necessity of executing a particular

combination of branches, but that of executing a branch

with particular kinds of data.

Attempts to extend white box testing so that it will

find hard-to-discover combinational defects include more

advanced coverage measures such as def-use [10]. In

general, this and other attempts to force the testing of

significant combinations of statements or branches has

not been found to be significantly more effective than

ordinary branch testing. One problem seems to be that

such methods are ignorant of the concepts used in

designing and creating a program.

Attempts to make the coverage testing of program

components more selective include weak mutation

testing [3]. This may be useful for simple faults, but it

seems that it is only by chance that it will be effective for

defects which involve higher level programming or

design and requirements level concepts.

Black box testing usually includes the testing of

boundary cases in an input or output domain. This is

more defect oriented than simple coverage. However, it

and related methods do not appear to go far enough.

They do not include information about the kinds of

things that are being done by a program. And, by

definition, they do not get inside it and base tests on how

the program works.

1.3. Patterns

It seems that in order to find elusive bugs, we have

to include more information about a program in the

testing process. Test selection patterns hold that

promise.

The patterns movement began with design patterns

[2]. Prior to this, design methods were either very

generic, such as Structured Design, or they were

associated with specific application areas, such as the use

of layers for operating system design. Design patterns are

generic but are personalized to a particular design

context. For example, the Creator Pattern gives rules for

identifying the class X whose instances should have the

responsibility for creating any necessary instances of a

class Y.
Design patterns have been very successful. They

identify best practices, and do it in an abstract way so

that patterns are applicable to a wide variety of different

possible concrete situations.

The phrase “test patterns” has been used in different

ways, including the following four:

 i) design for testability. The use of interfaces for

constructor parameter specifications so that either actual

production run objects or test objects can be passed is a

commonly used test pattern.

 ii) test process. The inclusion of integration testing

in a testing process, to be performed after unit testing, is

listed as a test pattern by some authors.

iii) testware constructs. In the Object-Mother

pattern a factory object is used to create structures of

instances in required states for a planned test.

iv) test selection. Standard testing methods, such as
Category-Partition, in which the tester divides input and

output domains into functional equivalence subclasses

and chooses interior and boundary points for each class,

are described as test patterns in Binder [1].

 In this paper, we use the phrase to refer to test

selection methods. The test selection patterns described

here include standard methods, but seen from a new

point of view, in addition to newer methods that allow

bug cornering application concepts to be used in the

testing process. One of the goals of the new methods is

to incorporate the spirit of design patterns: to identify test

patterns that personalize the testing process to a

particular context as opposed to completely generic

methods such as white and black box testing.

Some kinds of more modern testing methods, such

as model-based testing, do take conceptual program

information into account. In model-based testing [e.g.
9], it is assumed that a state model for a program is

available. It is used to guide the selection of tests that

are related to the abstract conceptual aspects of the

program that are elucidated in the model. This kind of

testing is part of the pattern based test selection strategy

suggested here, where it corresponds to a class of test

selection patterns.

Perhaps the most extensive use of the phrase “test

patterns” occurs in Binder’s monumental work on testing

[1]. He uses the phrase in a general sense to include: test

process activities, testware, and test selection methods.

His approach to test selection methods is model-based in

the sense that tests are selected that cover a

corresponding model. Binder’s approach is more general

than state model testing, in that many different kinds of

models are used, such as class models and decision

tables. The model-based part of the test patterns

approach that is described in this paper is similar to this,

but there are some important distinctions.

The work described here is part of the PASTA
(Pattern Activated Software Testing and Analysis)

project. The idea in this project is to organize and

construct testing and analysis patterns. This paper is

restricted to testing. To distinguish the test selection

approach described here from other approaches, it will be

referred to as the PASTA approach.

2. Test selection patterns

2.1. Pattern templates and contexts

For the purposes of this paper, a pattern template is

used which has 5 parts:

Name

Context

Risks

Tests

Examples

A context describes a situation in which a defect

might occur, and is based on an occurrence of one of the

three kinds of artifacts described below. The risks

section of a template describes potential defects that are

associated with the use of that kind of context artifact.

The tests section suggests tests that will find the

occurrence of such defects.

PASTA patterns fall into three major groups,

according to three different kinds of context artifacts:

 Program or physical artifacts

 Design mechanisms or "themes"

 Models

Program artifacts are basic entities such as variables

and expressions. They occur in programs, but also in

designs and specifications. Test patterns associated with

these kinds of entities are generic in the sense that they

can be used with any kind of program or relevant

development product.

Design mechanisms or themes are conceptual

devices that are used in developing a program. They are

sometimes oriented towards particular program

application areas, or standard parts of programs. This

orientation can be used to group them. Sample groups

include: data processing, user interface, graphics, and

distributed processing. Design mechanisms are the

principal technique for constructing test patterns that are

based on application concepts.

Design mechanisms appeared in limited form in

Brian Marick’s well known testing book [7]. The basic

strategy proposed in his book is to look for “clues” in a

program or its specifications. Clues include what are

referred to here as program artifacts, and also include

what Marick calls “cliche′s”. Cliche′s are simple

examples of design mechanisms. Marick lists two kinds

of cliche′s: searching and sorting. The idea of a cliche′ is
expanded in PASTA to include different kinds of design

mechanisms from different areas.

The inclusion of models in PASTA test selection

patterns is similar to the use of models in model-based

testing. There is however, a subtle but important

difference. In the approach described here, models (and

also design mechanisms and program artifacts) are part

of the context in a test pattern. In a PASTA model-based

test selection pattern, the suggested tests relate to the

context model and its risks, and so may suggest tests that

have model aspects in them, but the model-based fault

model came first. In Binder’s approach to model-based

testing, he starts by defining model-based tests

independently of context. These are, basically, tests that

cover a model. His context based fault models are not

model-based, only the suggested testing methods. In

some cases, his context/fault model describes classes of

faults quite independently of the suggested model-based

testing strategy, and there is no direct connection.

The PASTA approach is more in the spirit of the

testing methods described in James Whittaker’s How to

Break Software, which starts with defect types and then

identifies tests to expose those defects [13].

2.2. Patterns and risks

Two general kinds of risks appear in PASTA test

selection patterns:

i) fault-based risks. These occur when empirical

evidence indicates that there is a risk of certain kinds of

faults occurring in the use of an associated kind of

context artifact.

ii) failure-based risks. These occur when empirical

evidence indicates that there is a risk of program failure

when an associated kind of artifact is used with certain

kinds of defect-prone data.

Many defects involve some quirk or complication

that is a significant factor in the occurrence of the defect,

particularly for elusive bugs. In this case we may be able

to identify a secondary risk. A primary risk, and its

suggested tests, refers the simple, uncomplicated form of

a risk. A secondary risk, and its tests, involve the

complication. When a secondary risk occurs the pattern

template will contain complication, secondary risk and

secondary risk test sections. In some cases the primary

risk test section may be omitted. Some of the examples

below contain both primary and secondary risks.

2.3. Patterns and tests

In the case of failure-based risks, tests are often a

part of the definition of the risk. For example, a risk in

the use of the search design mechanism is that that it will

fail to work if the searched item is not present. The

suggested test follows immediately from the risk

description.

Fault-based risks are less suggestive with respect to

tests. The tester must find tests that will reveal the

occurrence of the fault if it is present. The suggested

tests should be more than "devise tests that will reveal

the fault". It should give suggestions on how to build

such a test, as in the pattern examples given below.

2.4. Patterns and examples

Test patterns must include one or more examples.

This is because patterns are both informal and abstract.

The examples "inform" the pattern. It is examples that

give them their substance and which make them

understandable. For the purposes of this paper the

following template for a defect description will be used:

Name

Application Brief description of the program/system

Defect Brief description of the defect that occurred

Failure Invalid behavior that occurs

Fault The program bug that causes this

Error The human error leading to the fault

Severity Critical, etc

Source Phase When the bug was introduced e.g.

design, requirements, implementation, enhancement

Detection Phase When it was detected

Note that we do not always have all of the above

information.

The following sections describe some sample

patterns for each kind of context artifact.

3. Program artifacts and patterns

3.1. Program artifacts

Two kinds of program artifacts will be discussed in

this subsection: variables and expressions. We will

consider one test selection pattern for each. These

artifacts may occur as parts of design mechanisms and

models, as well as programs, so the tests that are

suggested here are also relevant during the consideration

of these higher level pattern contexts. The difference is

that when they occur in a mechanism/theme or model

context it is possible to define tests that take additional,

more application dependent information into account

Artifact patterns subsume traditional program

coverage testing, since they require the testing of the

program elements used to define coverage measures.

Test patterns are more general than simple coverage,

since they can identify kinds of important testing risks
not readily incorporated in automated coverage

measurement, such as in the following sample pattern

and its associated complication.

3.2. Variable test patterns

Pattern Maximum Boundary Values

Context Artifact: A scalar variable x

Risks A program fails when a variable takes on its

largest possible value

Tests Construct a test in which the variable takes on

its maximum value, for each occurrence of the

variable

Complication The maximum value of x at any

time is bounded by the current value of another

variable y

Risks The program may fail when x is at its

absolute maximum (i.e. equals y when y is

maximum)

Tests Construct tests where x takes on its

absolute maximum

The defect in the following example will be revealed if it

is tested using the above Maximum Boundary Values

pattern.

Example Dating system bad delete, initial state

Application Simple dating system where members

can be added and deleted

Defect If the user attempts to delete a non-existent

member in a session, before an existing member has

been deleted, an out of bounds array index is

produced. This occurs because there is a loop index

x that iterates from zero to the position where an

item in a vector is stored, or to an upper bound y

when no item is found. Initially, y is set to the size

of the vector that is used to store the dating data,

which would make it out of bounds by one. If a user

is deleted, then y is reduced, so that x will now

always be in bounds.

Failure Program crash, error message

Fault Bad logic

Error Fuzzy reasoning

Severity Critical

Source Phase Detailed design

Detection Phase Post release

3.3. Expression test patterns

Pattern All Terms Relevant

Context Artifact: Boolean expression

Risks The program fails to make certain distinctions

because the effects of one of the terms is masked

and does not affect the expression’s outcome.

Tests For each basic term t, construct a test in which

the rest of the expression is fixed in such a way that

as we vary the value of t the value of the whole

expression varies. If possible, relate this term to the

expected alternative program behavior and use tests

in which that behavior should vary.

An example of the use of this pattern is included

below in the discussion of design mechanisms.

4. Design mechanisms and patterns

4.1. Mechanisms and program application areas

These kinds of patterns are important for boring
down on a hiding bug. They include general mechanisms

such as Marick’s search and sort cliche′s. Mechanisms

may be associated with classes of programs. An

example from each of two areas is included here: User

Interfaces and Data Processing.

4.2 User interfaces

Pattern User interfaces: Validated Data Entries
Context Design Mechanism: The user enters a set of

integers or other data items in one or more slots,

whose range validity is checked

Risks Failure to completely check each entry item

Tests Enter invalid data for each slot that should

cause a change in the program behavior

Complication Interdependent validity

specifications. The validity of one item depends

on the current entries of the others

Risks Not all interdependencies are tested

Tests Try invalid data in each position, both for

the position check and the relationship validity

checks

Example Nokia Cell phone clock set

Application A certain (older) model Nokia cell

phone contains a menu item that allows the user to

set the current time clock using number and position

changing keys. The time can be in either 24 or 12

hour representation. There are four digits. The last

two digits have non-interdependent validity checks.

The first entry can be 0,1 or 2. The phone will stop

you from entering an invalid number in this position.

The second digit can be a 0,1,....9, but depending on

the first digit some entries are not allowed. For

example, if the first digit is a 2, you cannot enter an

8.

Defect The phone fails to check the first number

being entered against the value of the second. So if
the time is 18:00 and you try to enter a 2 in the first

position, it will let you. (This is rejected by a later

time setting mechanism, but the entry should be

rejected as it is entered, as are other illegal entries).

Failure Illegal time entered

Fault Bad logic

Error Fuzzy reasoning

Severity Low

Source Phase Detailed design

Detection Phase Post release

The Validated Data Entry pattern, with its

complication, identifies a set of necessary tests that were

apparently omitted from the cell phone tests. We can

consider what other kinds of testing might have worked.

Since there is an implicit expression for specifying

validity, we could use expression testing.
We have an input space with 4 variables, say

h1,h2,m1,m2, for the first and second hour digits and the

first and second minutes digit. Each digit has a range

specification:

 0<=h1<=2

 0<=h2<=9

 0<=m1<=5

 0<=m2<=9

One kind of necessary test will require trying to

enter invalid values. But there are also some validity

relationships:

h1 = 0,1 and h2 = 0-9

or

h1 = 2 and h2 = 0,1,2,3

We could apply the All Terms Relevant expression

testing pattern here, which is essentially equivalent to the

use of this pattern for this example.

4.3. Data Processing

Pattern Implicit Account Break

Context Design Mechanism: It is common to have a

file of records that has been sorted by account

number that has to be sequentially processed. It is

necessary, when reading through the sequence of

records, to recognize when the account changes (i.e.

recognize an account break), in order to do special

processing at that time.

Risks Failing to recognize the account break

Tests Designed to give different output if an account

break is missed

Complication Alternative kinds of records

occur, requiring different kinds of processing

Risks For some kinds of records the implicit

account break processing is omitted and not

detected

Tests Test the account break detection feature

for each kind of record

Example General ledger accounting system

Application Accounting system that periodically has

to update accounts from a transaction file. The

records can be financial or non-financial, resulting in

different kinds of processing.

Defect The account break is not checked for when a

non-financial record is encountered. So if you have

an account that has financials, that ends with a non-

financial, and that is followed by an account with

financials, then the entries for the two accounts will

get merged together.

Failure Incorrect account totals

Fault Missing code

Error Fuzzy reasoning

Severity High

Source Phase Detailed design
Detection Phase Post release

5. Models and Patterns

5.1. Models

Two kinds of models will be discussed here:

functional and state models. We can consider both

simple and compound versions of these models.

Compound models contain two or more interacting

simple models. In the case of state models, a compound

model consists of a system of communicating

components, each of which could be modeled as a state

machine.

5.2. Functional models

Functional models are black box models for which

there is an input and an output specification from which

tests can be generated. In the introduction, this was

introduced as an historically important kind of model

that is commonly used for testing programs or program

components. Functional testing is very general and can

be extended to include all kinds of functions, such as a

low level function that indexes computations in a

program loop, or a higher level functional slice of a

program that computes a result for a particular kind of

data. Much of the testing that occurs in other models,

such as state models, can be described as instances of

functional testing. For example, a transition in a state

model is a function whose input is a state and an event,

and whose output is a new state.

We can also use functional testing for abstract

functions that give an overview of some system action.

In the above data processing account break example, we

could formulate the processing that takes place for each

record as a function that takes the record and the current
program state as input, and produces a new state plus a

flag that indicates if an account break has occurred.

We will look at two examples here. The first is a

simple concrete function.

Pattern Invalid Input Data

Context Functional Model: user can cause a function

to be invoked that uses input data to return a result

Risks Function fails to check for invalid input data

Tests Test for invalid data for each kind of input.

Look at ranges/domains and choose invalid data

outside of each boundary

Example Illegal customer data (Jessica Chiang)

Application A banking application can be used to

determine certain “profitability” measures of

selected customers. The factors that are used in this
function are: net interest revenue, other revenue,

direct expense, indirect expense, and risk provisions.

Each of these is based on a combination of the data

plus certain equations.

Defect The program does not detect illegal data, and

in particular, if there are negative numbers where

they should not appear. It simply produces wrong

results.

Failure Incorrect output

Fault Missing code

Error Oversight

Severity Moderate

Source Phase Design

Detection Phase System testing

The above example illustrates the application of the

patterns approach to straightforward functional black box
testing. There are no complications, and no special

application specific concepts are needed for discovering

this simple, non-elusive bug. In the next example, we

consider a pattern related to the abstract account break

function mentioned above. Application of the following

pattern to the testing of this function will reveal the

defect. In this case the bug is elusive, and the extra

information in the complication section of the pattern is

critical.

Pattern Multiple Subfunction Domain Subclasses

Context Functional Model: A function occurs whose

input domain can be partitioned. Each partition

element results in the application of a different

subfunction.

Risks Program fails to work for some subfunctions

Tests Test each subfunction/partition element

Complication There is a common task that

must be performed for each of the

subfunctions, along with their unique tasks.

Risks Programmer assumes that common
task is done in a common place and does

not have to be done for each subclass

Tests Construct tests for each subdomain

that will reveal if the common subtask is

missing

5.3. State models

As discussed earlier, model-based testing often

refers to the practice of generating tests that will “cover”

all of the transitions in a state model. The emphasis in

the patterns approach is somewhat different. As in

model-based testing, the tester identifies the occurrence

of a model but at this point we look to patterns to

indicate possible tests associated with model-based risks,

rather than simply trying to cover the model with tests.

Two sample patterns are given here. The first is a

single model pattern for a simple bug. The second

involves a compound state model in which two

components communicate over a channel, and includes

an elusive bug complication.

Pattern State Transition Input Validity

Context State model: Transition events are

associated with the receipt of input, resulting in a

transition to a new state

Risks Input received on a transition is invalid

Tests Construct invalid data tests for each transition,

which are such that if the input data associated with

the transition is invalid this is observable as

unexpected program behavior

Example Cell phone message receipt (Angela

Molnar)

Application A cell phone can receive short

messages from a web site. When the message is

received, it is stored and there is a transition to a

message received state.

Defect If a message longer than 128 characters is

received, the cell phone is unable to save and store

it. It simply freezes.

Failure System freeze

Fault Missing failure detection/correction capability

Error Unknown

Severity Critical

Source Phase Design, requirements

Detection Phase Post Deployment

This is another example where we could have used a

functional model. In this case the function corresponds

to a state transition. In fact, we can view state models as

being a tool for recognizing functions for functional

testing.
In the next pattern, the suggested testing method

involves the familiar domain partitioning technique used

with functional models, but this time in conjunction with

a communications channel.

Pattern Communications Channel Domain Partition

Context Different kinds of data are sent from one

component to another, which can be modeled by a

domain partition. For each partition element, the

destination component will exhibit a unique

different kind of behavior.

Risks The sender may not correctly send data for

some partition element

Tests A test for each partition element

Complications There is an initial domain

partition that, for the purposes of

communication, is mapped on to a different
domain decomposition.

Risks There may not be a simple 1-1

mapping and implementation for the

derived partition may not be correct or

complete.

Tests Identify all derived partition elements

and construct tests for each of them.

Example Outdoor light management system (Ryan

Shyffer)

Application A system was built for turning lights off

and on at a city's parks. It did this using paging

hardware. A series of characters would be sent out,

each of which specified what to do for the four 15

minute periods in an hour. For example, 1100

would indicate a half hour on and a half hour off.

However, only 10 characters could be sent, so that
some possibilities were eliminated. Basically, these

were the ones where there was an isolated 15minute

period in the hour in which the lights were on/off but

in the adjacent periods they were off/on. The

eliminated combinations were 1010, 0101, 1011,

1101, 0100, and 0010.

Defect The problem was that the system did not

correctly behave for the derived partition element

1001.

Failure Incorrect behavior

Fault Missing/bad code

Error Oversight

Severity Critical

Source Phase Design/programming

Detection Phase Beta testing

6. Summary and Conclusions

Simple coverage measures and black box testing are

effective for simple bugs, but more elusive defects may

be too well hidden. It is necessary to “corner” them in a

conceptual box inside of which they can be more easily

discovered. Test selection patterns offer a promising

way of doing this, while at the same time providing a

uniform approach that includes both traditional methods

such as coverage and black box testing, as well as more

contemporary testing strategies such as model-based

testing.

Design mechanisms and secondary risks can be used

to introduce the kinds of application dependent concepts

or refinements that may be necessary to trap an elusive

bug. The identification of design mechanisms such as,

for example, “Implicit Account Breaks”, makes it

possible to have personalized testing patterns in the spirit

of a design pattern. The identification of secondary risks

guides the tester in the development of more refined

tests. Finally, test patterns emphasize the inclusion of

examples, which inform a pattern. Examples suggest

additional possible refinements in the application of the

pattern.

A list of test selection patterns may seem to be the

same thing as a list of defect taxonomies like those found

in, for example, [1] and [5], but the emphasis and

motivation are different. Bug taxonomies are lists of

types of defects whereas test patterns are descriptions of

testing rules. In some cases a defect category suggests a
test but in others it does not. The difference is clearer

when the defect categories focus on failures, as in [4] and

[12]. The idea with failure lists is for the tester to look at

possible kinds of failures in order to be jogged into

seeing possible risks associated with a product. With

PASTA test patterns you look for context artifacts, and

then use patterns to identify risks associated with the use

of such artifacts, leading to the use of associated tests or

analysis methods.

A list of test selection patterns may also resemble an

inspection checklist. A risk may be manageable by

inspection if its manifestation can be recognized by

reading the code or other development artifact. The

analysis side of PASTA includes inspections for

situations like this. But risk management using

inspections is not always possible for several reasons. In

the case of failure-based risks, an inspection may be

effective only in those cases where the code is simple

enough to be mentally executed. In the case of fault-

based risks, it may not be easy to see if the fault is

present, and a test may be easier to perform than an

attempted analysis. For example, interfaces are a

common form of risk. If the interface is documented,

consistency inspection may be sufficient. If it is not,

carefully chosen interface tests may be the only feasible

approach.

Two potential problems with the patterns approach

are: i) difficulty in accessing and using the right test

selection patterns and ii) having an incomplete set of
patterns. If there are too many patterns, and it is

necessary to manually read through them all to see which

are applicable, the approach may not be acceptable. At

present, the PASTA collection of patterns is organized in

a simple hierarchical directory. As it grows, it may be

necessary to use something more sophisticated.

 In order for the PASTA approach to work, it is

necessary to develop a comprehensive set of design

mechanism and model patterns. However, even if we

only have an incomplete set, the approach is still feasible

for two reasons. First, we can incorporate traditional

methods as test patterns, so we still have the testing

power of non-pattern oriented methods while gaining

additional testing discernment with those patterns that

have been developed. Second, the exercise in examining

existing patterns for relevance, even if none are found,

may suggest new design mechanisms or model
complications that could be used to improve the testing

of the program under evaluation.

Test patterns were a new and popular topic several

years ago. Brian Marick started a test patterns web site

[8] and several patterns workshops were organized but

the interest abated. The web site has not been developed

since 2001 and the workshops were discontinued. The

recent publication of a Java testing patterns book [11]

may motivate new interest in the area. As for the

PASTA project, current work includes: augmenting the

patterns collection, identifying additional design

mechanisms and exploring a test and analysis patterns-

oriented development process.

7. References

[1] Robert V. Binder, Testing Object Oriented Systems,

Addison-Wesley, 1999.

[2] Eric Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns, Addison-Wesley, Reading, MA,

1994.

[3] William E. Howden, Weak Mutation Testing and

Completeness of Test Sets, IEEE Transactions on Software

Engineering, Volume 8, Number 4, July 1982.

[4] Ajay Jha & Cem Kaner, " Bugs in the brave new unwired

world." Pacific Northwest Software Quality Conference,

Portland, OR, October 2003.

[5] Cem Kaner, Jack Falk, and Hung Quoc Nguyen, Testing

Computer Software, Thomson Computer Press, 1993.

[6] Manfred Lange, Its Testing Time! Patterns for Testing

Software, Gemplus GmbH, 2001.

[7] Brian Marick, The Craft of Software Testing, Prentice Hall,

1995.

[8] Brian Marick, http://www.testing.com/test-patterns.

[9] Harry Robinson, Finite State Model-based Testing on a

Shoe-String, Microsoft, 1999.

[10] Sandra Rapps and Elaine Weyuker, Selecting software test

data using data flow information, IEEE Transactions on

Software Engineering, vol. 11, no. 4, April 1985.
[11] Jon Thomas, Mathew Young, Kyle Brown, Andrew

Glover, Java Testing Patterns, Wiley, 2004
[12] G. V. Vijayaraghavan, A Taxonomy of E-commerce risks

and failures, M.Sc. Thesis, Florida Tech, 2003.

[13] James A. Whittaker, How to Break Software, Addison

Wesley, 2001.

