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A measure of software dependability called trustabzlzty is described. A program p has trustabil-

ity 2’ if we are at least T confident that p M free of faults. Trustability measurement depends on

detectabdzt.v. The detectability of a method is the probability that it wdl detect faults, when there

are faults present. Detectability research can be used to characterize conditions under which one

testing and analysis method is more effective than another. Several detectability results that

were only previously described informally, and Illustrated by example, are proved. Several new

detectability results are also proved. The trustability model characterizes the kind of information

that is needed to Justify a given level of trustability. When the required information is available,

the trustabdity approach can be used to determine strategies in which methods are combined for

maximum effectiveness. It can be used to determine the mimmum amount of resources needed to

guarantee a required degree of trustability, and the maximum trustability that is achievable

with a given amount of resources, Theorems proving several optimization results are given.

Apphcatlons of the trustability model are discussed. Methods for the derivation of detectability

factors, the relationship between trustability and operational reliability, and the relationship

between the software development process and trustability are described.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging;

F.3. 1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about
Programs

General Terms: Reliability, Verification

Additional Key Words and Phrases Analysis, dependability, detectability, failure density, statis-
tical, testability, testing, trustability

INTRODUCTION

Many testing methods for software have been proposed. Although these

methods have been found to be effective in revealing the presence of faults,

they do not usually indicate the degree to which the tested software can be

considered to be dependable.

Possible approaches to dependability estimation include reliability analy-

sis, in which random testing is used to determine the probability of program

failure. There are several ways of formalizing this concept. Examples include

the simple model, used in Howden [1987], in which random testing over a
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program’s operational distribution is used to establish confidence in an upper

bound on the program’s failure density. A program’s operational distribution

is the distribution with which its input will appear when the program is used

in its operational environment. A program’s failure density is the probability

of its failing when it is executed over its operational distribution. It is the

weighted (by the operational distribution) fraction of a program’s input

domain over which the program will fail. Failure density analysis can be used

to compute the number of tests needed to achieve a required level of confi-

dence in a given failure density bound. Other approaches to reliability

analysis include more-complex measures, such as estimates of mean time

between failure [Muss et al. 1990].

The disadvantages of the failure-density\random-testing approach to de-

pendability estimation are that it requires a knowledge of a program’s

operational distribution, and it requires a large number of tests for even a

modest level of confidence in a modest failure density bound. This observation

has been previously made by several authors, e.g., Hamlet and Voas [1993]

and Howden [1987]. For example, 461 tests are needed for establishing a

bound of 0.01 with confidence 0.99.

One of the problems with random testing, and hence dependability estima-

tion based on random testing, is that it does not use information about fault

classes or special properties of classes of programs and program functions. It

is commonly accepted in software testing that “intelligent” or “guided” choices

of tests are more likely to reveal faults than random sampling over an

operational distribution. Guided testing involves rules that direct the selec-

tion of tests toward certain subdomains of a program’s domain. It includes

methods such as coverage-based testing (e.g., Clarke et al. [1985], Laski and

Korel [1983], Ntafos [1988], Rapps and Weyuker [1985], and Woodward et al.

[1980]), functional testing [Howden 1985; 1987; Marick 1992], fault-based

testing [DeMillo et al. 1978; Foster 1980; Hamlet 1977a; 1977b; Howden

1982; White and Cohen 1980], and specifications-based testing (e.g., Gannon

[1981]).

Guided dependability evaluation includes not only testing, but also pro-

gram analysis and program development methods. Requirements analysis,

for example, can be used to detect functional faults early in the development

of a system. Proofs of correctness may be used to detect algorithm design

faults, and static analysis to detect coding faults.

We describe an approach to dependability estimation that can be used to

incorporate reliability-oriented methods, such as random testing, and guided

testing and analysis methods into a common dependability framework. It is

based on the concept of trustability, which is defined to be confidence in the

absence of faults. Trustability measurement depends on the availability

of detectability factors. The detectability of a method is the probability that

it will discover a fault in a program, if a fault is present. The trustability/
detectability framework can be used to define situations formally in which

one method is better than another, to consider optimal mixes of methods, and

to characterize the kinds of assumptions that have to be made in order to

concllude that a program has a required level of dependability.
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38 . Software Trustabllity Analysis

The article has three general sections. Previous theoretical work on testing

included comparative analyses of the detectability of two very general meth-

ods, random and partition testing, for the general class of all faults. In

Section 1 we introduce several original results in which we formally charac-

terize and state circumstances under which one method is superior to an-

other. These results are examples of the kinds of theoretical results that are

possible in the study of detectability. Section 2 contains trustability results.

Here we indicate the kinds of trustability properties that we can consider,

independently of the sources of detectability information. In Section 3 we

consider more-practical questions, such as the sources of information about

fault classes and detectability factors and the relationship between trustabil-

ity and operational reliability.

1. DETECTABILITY ANALYSIS

Failure Density and Detectability Analysis

Previous analyses of method detectability included comparisons of partition

testing [Richardson and Clarke 1981] with random testing. In partition

testing, the input domain of a program is decomposed into subdomains, and

tests are distributed equally to each of the decomposition’s subdomains,

rather than randomly over the whole domain. Within a subdomain, tests are

chosen randomly. The term “random” is normally associated with the uni-

form distribution, but other distributions are possible. Partition testing can

be viewed as a general model for testing methods which involve disjoint

decomposition of a program’s input domain, such as informal functional

testing.

Earlier work by Duran and Ntafos [1981; 1984] and Hamlet and Taylor

[1990] used failure densities to investigate the conditions under which parti-

tion testing is superior to random testing. In Hamlet’s work, the effectiveness

of a testing method was equated with the probability that its use would cause

at least one program failure to occur. In the case where the failure density is

zero, the probability will be zero, so we can think of this probability as being

a measure of detectability in the sense that it is the probability of revealing a

fault, when a fault is present (i.e., when the failure density is nonzero). We

will use p, to refer to the effectiveness of random testing and pP to refer to

the effectiveness of partition testing. Hamlet gave examples that indicated
that partition testing was not superior to random testing ( pP < p,) under a

variety of circumstances. He also informally described situations under which

partition testing would be superior and gave tables of empirical results that

supported his conclusions.

Later work by Weyuker and Jeng [1991] investigated the partition model

further and made a number of observations. Using examples, they showed

that partition testing could be worse than random testing. They also identi-

fied the worst kind of partition from among different partition possibilities. In

another observation they proved that when all of a partition’s elements are of

the same size, and an equal number of tests is chosen from each, then
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partition testing is at least as good as random testing. They also proved that

if partition elements have the same individual failure densities, then parti-

tion and random testing are equally effective. In their paper they repeated

the observation by Hamlet that partition testing will be more effective than

random testing when it results in the creation of domain subdivisions with

high failure densities and low frequencies.

T-he partition-testing model also appears in Frankl and Weyuker [1993],

where they use it to compare different testing methods. Different possible

relationships between test method partitions are defined, and the fault-

revealing effectiveness of methods having those partitions are compared.

Tihe simple analyses that we describe below require that input domain

decompositions be partitions in the sense that they are complete and dis-

joint, i.e., all of a program’s input domain must be considered, and the de-

composition elements must be nonintersecting. This is the property that a

decc)mposition must have to be classified as a partition. Much of the work on

decc)mposition-oriented analysis uses this term and depends on a decomposi-

tion being a true partition, but we note that in some cases the word is loosely

used to refer to decompositions that are not true partitions. We will use the

world in its correct mathematical sense and will refer to disjoint element

deccjmposition testing methods as partition-testing methods. The disjoint

decc)mposition element property holds for methods such as functional testing

and path testing. It does not hold for testing methods that involve coverage

mea sures, such as statement and branch coverage, but there are ways in

which disjoint element decomposition (i.e., partition) analysis can also be

used to analyze their effectiveness [Frankl and Weyuker 1993; Howden and

Huamg 1993]. Weyuker and Jeng [1991] have previously documented the

problem of intersecting decomposition subdomains and made several suggests

on how this problem could be ameliorated.

Theoretical Detectability Results

Suppose that the input domain of a program p is decomposed into disjoint

subclomains Dl, D2, . . . , D.. Suppose that for each D,, p has a failure density

di when it is executed over randomly selected data from the subdomain Di

according to some distribution such as the uniform distribution. Suppose that

when p is executed over its complete domain D using the same random

distribution, Di will be executed with frequency L. Then we can use the

following formula to define the failure density d for the program p when it is

tested over D using random testing:
n

~=1

Suppose that we execute p over a sequence of IV tests. Then the probability

of finding at least one fault when random testing is used is given by the

following [Duran and Ntafos 1981; 1984]:

( 1

N

1– l–~f,d, .
\ ~=1 1
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40 . Software Trustab!llty Analysis

There are two possible partition-testing models: deterministic and statisti-

cal. In the deterministic model, each decomposition element is allocated an

equal number of tests. In the statistical model, we assume that, with equal

probability, we choose a decomposition subdomain and then (as in determin-

istic partition testing) randomly choose an element from that subdomain. If p

is tested using statistical partition testing, then the probability of finding at

least one fault during N tests is given by the formula

( )
N

1 – 1 – ~ (1/n)d, .
~=1

If deterministic partition testing is used, then the probability of finding at

least one fault is given by the following [Duran and Ntafos 1981; 1984]:

1– fi(l-dL)N’n.
~=1

Note that in the above formula the probability of finding a fault will be zero

if there is no fault, (i.e., the failure densities are zero), so that these probabili-

ties are detectability measures.

In the following, p~P denotes the effectiveness of deterministic partition

testing and p,P the effectiveness of statistical partition testing. In those cases

where a theorem holds for both kinds of partition testing, we use the notation

Pp.
We can use these formulae to prove theorems that compare the effective-

ness of random and partition testing. For completeness, we first repeat a

theorem that is found in both Hamlet and Weyuker. It applies to both

deterministic and statistical partition testing.

THEOREM 1.1 [HAMLET AND TAYLOR 1990; WEYLTKER AND JENG 1991]. Sup-

pose that the failure densities d, for the subdomains D, of a program P are all

the same. Then partition and random testing are equally effective in discover-

ing faults, i.e., p~ = pP.

In previous analysis of partition testing only the deterministic model was

used. We can prove certain results using the statistical model that are not

provable using the deterministic model. We will first compare partition and

random testing using the statistical model and then give a theorem describ-

ing the relationship between the statistical and deterministic models. This is
followed by theorems that give important results for the more traditional,

deterministic model.

In previous work, as we have mentioned above, the observation was made

that partition testing would be more effective in situations where there were

partition subdomains with high failure densities and low frequencies, and

random testing would be better when high failure densities were associated

with high frequencies. Examples were used to support this claim. By charac-

terizing idealized situations having these patterns of frequencies and failure

densities, and adopting the statistical model of partition testing, we are able

to prove that this observation is correct.
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‘1’’FfEOFtEM 1.2. Suppose that the domain D of program p is decomposed into

subdomains D,, 1 s i < n, such that subdomains with higher failure densities

haue lower frequencies and subdomains with lower failure densities have

higher frequencies (i.e., for all i, j, 1< i < n, 1 <j < n, if d, > d], then

f, < ,6). Then if not all failure densities are equal, statistical partition testing

will be more effective than random testing, i.e., p,P > p,.

PROOF. In the following, and also in the proofs of Theorems 1.4, 1.5, and

1.6, we will assume that the number of tests, N, is equal to the number of

part ition subdomains, n. To generalize, we assume that we can divide N up

to IV/n sets of tests and apply the relevant testing methods repeatedly.

We prove the theorem by showing that

which implies that

pr=~–

~-ythe conditions

(l-kdfln<l-(l-: >ldin=p

of the theorem, it is possible to number the partition

subdlomains so that their frequencies are in monotonic increasing o~der, and

their failure densities in monotonic decreasing order. Because the frequencies

sum to 1, there is some k, 1 < k s n, such that for i > k, f, s I/n, and for

i > k, f > l/rL The case where all frequencies are l/n corresponds to the
case where ii = n. When this is not the case, k must be less than n. Because

the frequencies sum to 1, we can show that

k n

x (l/n -f,) = ~ (f, - l/n)
~=1 2=/3+1

so that

k k k

L=k+l 1=/?+1

and hence
n

If the failure densities are not all equal, we can make the inequality strict,

and hence
In n

~lIEOREM 1,3. Suppose that the domain for p is decomposed into subdo-

mains D,, 1 < i < n, such that subdomains with higher failure densities have
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higher frequencies and subdomains with lower failure densities have lower

frequencies (i.e., for all i, j, 1< i < n, 1 <j < n, ifdl > d], thenf, > ~). Then

if not all failure densities are equal, statistical partition testing will be less

effective than random testing, i.e., p~P < Pr.

PROOF. The proof is analogous to that for Theorem 1.2. ❑

A version of Theorem 1.3, but for deterministic partition testing, was

previously introduced in a less-formal form by Hamlet and Taylor [1990] and

discussed in more detail by Weyuker and Jeng [1991]. It describes some

simple conditions under which deterministic partition testing will improve

the effectiveness of a testing effort. We can relate their result to the above

result by relating statistical and deterministic partition testing, using the

following theorem.

THEOREM 1.4. p~P > p,P. (Note that this is the same as the following

theorem: if the frequencies for all subdomains are not all equal, then pP > p,

[ Weyuker and Jeng 1991].)

PROOF. Under the assumption of the theorem, we have

p~P = 1 – fi(l – d,) and p,P
~=1 ‘l- HAd)n

We can show that p~P > p,P if

fi(l-d)<(l-%d)n~=1

Let EL = 1 – d,. Then

~E, =n-~d, and ; +=l-; $+
~=1 ~=1 2– L–

and what is required is to prove that

We ignore the case where n = 1,since in this case statistical and determinis-

tic partition testing are equivalent to random testing, since there is no

partition. The proof is by induction, with base case n = 2. The base case can
be easily shown. Assume that the formula holds for n = k, i.e.,

and that n = k + 1. Without loss of generality, assume that Eh + ~ is a
maximal El. Then

ACM TransactIons on Software En~neermg and Methodology, Vol. 4, No 1. January 1995



W. E. Howden and ‘f, Huang . 43

Let

Then

lk

E=z,~EL and Ek+l=E +x.
~=1

():~Ei ‘Eh,l =E’(E +x) =Ek+’ +E’x.
~=1

Alternatively,

(
k+l

= E+=
k+l )

()=Ek+l+(k+l)Ek x
‘+1

(k+l)k E~_l x 2
+

2! (1‘+1
+ . . .

>Ek+l +Ekx,

and lhence p,P < p~P. ❑

Theorems 1.2 and 1.4 can be combined to prove that, under the conditions

of Theorem 1.2, deterministic partition testing is more effective than random

testing (i.e., p~P > p,). There are cases that satisfy the conditions of Theorem

1.3 under which either random or deterministic partition testing is more

effective, so that the comparison of deterministic partition and random

testing is more complicated.

We can approach the comparison of deterministic partition and random

testing in a different way, by comparing the ratios of their effectiveness.

Informal observations about ratios of effectiveness were made by Hamlet and

Taylor [1990]. In the following theorems we give formal statements of prov-

able effectiveness ratios.

THEOREM 1.5. Combinations of frequency and failure densities can occur

for which the ratio of effectiveness of deterministic partition to random testing

is arbitrarily large.

PROOF,

&fi(l–dL)
‘dp = ,=1

‘r l-(’- ;ldf)n”
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Consider the case where dl # O and the other d, are arbitrarily small.

Assume that fl is arbitrarily small. Since the ~, sum to 1, this implies that

~ d, f,
~=1

is arbitrarily small, so that

pdp =

“ l-(+lfdr

will be arbitrarily large. ❑

~IIEOREM 1.6. The ratio of effectiveness of random-to-deterministic parti-

tion testing is bounded by

P, <n
>

Pdp

where n is the number of subdomain elements in a partition.

PROOF. Let d~,X be the maximal value of the partition subdomain failure

densities. Then

p=l-(l-:ld~)n<l -(l-dmx)n

and

p~P=l–fi (l-d, )>l-(l-d~,X) =d~,X
~=1

so that

P,
~-(l->,dfi)n < l-(l-dm.)n =~(d )

—

Pdp l–fi(l-dt)
d

max ,
max

~=1

To obtain the extremal points of the functions F(03max ) we need F“( cimax ) = O,

or

d~,, n(l – d~,X)”-l – (1 – (1 – d~,, )”) = O.

Hence, at the extremal points for F(d~,X ), we know that

1
(1 –d~~,)’ =

d
1 + ‘“n

1 – d_
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so a-t those extremal points

[ )_1
l–

d~~X n
1+

1 – d~,, n
F(d~,x) = —

d ma x 1 + (n – l)d~,,

This fraction obtains its maximal value of n as d~~, converges to zero and

hence

P,
—<n.
Pdp

The above two theorems indicate that the potential “loss” in

rather than random testing is bounded, but its potential

❑

using partition

“gain” can be

arbitrarily large. We carried out several experimental studies in which

failure densities and frequencies were generated randomly which indicated

that we can expect the “average” performance of partition testing to be

superior to that of random testing.

Detectability Analysis and Standard Testing Methods

The above results can be used to help explain why methods such as func-

tional testing may be more effective than simple random testing. In func-

tional testing, programmers are advised to choose separate tests for extremal

cases. It is common knowledge that the code for these special cases is often as

fault prone as the code for cases corresponding to the nonextremal data. We

can expect special-case code to have a relatively small corresponding program

subclomain. This implies that during random test selection over the whole

program domain it will be chosen with low frequency. It is also often true that

extremal-case subdomains have the property that if a program fails using

test data designed for those cases, it will fail over the whole extremal-case

subclomain. It follows that the proportion of failure-inducing input in failure-

causing extremal-case subdomains will be high. This indicates that functional

testing is likely to be associated with decompositions in which there are

subclomains with low frequencies and high failure densities, the conditions

under which theory indicates that guided (i.e., partition) testing will be more

effective than random testing.

It is noted that the generation of tests using random testing may be

considerably cheaper than the generation of functional tests, which may

require considerable analysis. In this case, the comparison of random and

functional testing should include a cost benefit factor, since it may be possible

to use a larger number of random tests, at the same cost, than functional

tests. Additional detectability research might include considerations such as

this. In many situations, however, it is the cost of checking output, of
verifying correct behavior, for a set of tests that is the overwhelming cost

factor, in which case the above analysis which assumes equal numbers of

tests for random and functional testing is appropriate.
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We note that the above argument is only of practical interest if it is

associated with a domain partition in which there are a “small” finite number

of elements, ruling out degenerate examples in which it is applied to parti-

tions in which every element of an input domain is divided into its own

extremal-case subdomain.

As pointed out by Weyuker and Jeng [19911, the above results are difficult

to apply to coverage measure testing methods, such as branch testing,

because the decompositions that such a method induces do not have disjoint

subdomains (i.e., they are not partitions), There is, however, a way to apply

the partition-based failure density results to coverage measure testing. Sup-

pose that a sequence of tests has been carried out, and it is discovered that

some part of a program, say some branch, has not been tested. Then consider

a partition of the domain into two subdomains, one consisting of the subdo-

main that causes that branch to be followed, and the other subdomain its

complement. Now if random testing had been used up to this point, the fact

that one of the branch subdomains had not been tested would indicate that it

has a low frequency with respect to random testing. If both branches lead to

equally complex parts of a program, we might expect them to be equally

likely to have faults, and hence, initially, expect them to be associated with

partition subdomains that have equal estimated failure densities. However,

suppose that during the initial testing that no failures occur for the tested

subdomain. Then we will have a new situation in which the failure density

for the executed part of the domain should be assumed to be lower than that

of the subdomain corresponding to the unexecuted branch. This means that a

situation has developed in which a low-frequency subdomain (the untested

one) is associated with a (relatively) high failure density (estimation). The

failure density theory developed above suggests that we should then use

partition testing to force the testing of the untested subdomain, which

coincides with the common use of coverage methods as a corrective measure

for an otherwise random approach to testing, e.g., Howden [1987].

2. TRUSTABILITY ANALYSIS

In the study of detectability, we analyze the effectiveness of different meth-

ods in terms of factors such as failure densities and properties of a program’s

operational distribution. In trustability analysis, we characterize dependabil-

ity properties in terms of method detectability factors. For generality, we also

include fault class frequency factors, and program classes. It is possible to
create different models of trustability. We first introduce and study proper-

ties of a very simple model, and then describe possible elaborations later in

the article.

Detectability and Trustability

The simple concept of trustability that we will use here is based on hypothe-

sis testing. In hypothesis testing, we have a hypothesis whose truthfulness

we test with an experiment, The experiment is designed so that, on the basis

of the experiment, we reject the hypothesis or accept it with a certain risk
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factor, say q. The risk factor is the probability that the experiment will not

resu”lt in rejection of the hypothesis when the hypothesis is false. When we

accept the hypothesis, we say that it is true with confidence 1 – q.

In our application of hypothesis testing, we model software testing and

anal,ysis as a process that involves the selection of a program from a program

space, followed by the application of one or more evaluation methods to that

program. The selection process may occur in stages, and the evaluation

methods applied to intermediate program documents. Our hypothesis is that

the selected program is free of faults. If we discover a fault we reject the

hypothesis. If we do not discover a fault, we accept the hypothesis with a risk

factor associated with the detectability of the methods for the program space.

The detectability of a method M is the probability that M will detect the

faults in a selected program, if that program contains a fault.

In the simplest case, suppose that a single method M with detectability D

is applied to a selected program p. Then either the program has faults, or it

does not. IrI the case where it has faults, the risk factor is 1 – D. In the case

where it does not have faults, the risk factor is zero. Suppose that M is used

to evaluate p, and no faults are detected. The risk of our falsely concluding

that p is free of faults is at most 1 – D so that our confidence in freedom

from faults, i.e., the trustability of p, is at least T where

T=l–(l– D).

Thle above formula is an example of a trustability guarantee. We can

cons truct more powerful and more general formulae by taking different kinds

of information into account.

In practice M may involve the repeated application of some step until no

fault is discovered, and it may involve the correction of faults as they are

disccwered. At some point the “exit criteria” for the method is met, and then it

terminates. If D is the detectability of a method, then 1 – D is the probabil-

ity of the exit criteria being incorrect, i.e., the method is terminated when

there are still faults in a program.

The detectability of a method maybe deterministic or probabilistic. If it is

deterministic, then it is equal to 1 for some associated fault class, since it is

guaranteed to find faults of that type always. Static analysis methods such as

those that look for uninitialized variables are examples of deterministic

methods. If a method is probabilistic, it may or may not find a fault from

some class, with a certain probability. Methods with probabilistic detectabil-

ity involve some kind of sampling process. The sample space might be a space

of possible programs, a space of program analyses, or the space consisting of a

program’s input domain. It may be observed, for example, that in a given

environment that a method M has a certain probability of detecting faults

for programs generated in that environment. In this case the sample space is

the set P of possible programs that could be ge~erated, and the development
of a program is modeled as a process in which a sample from P is selected.

The detectability of random testing is probabilistic, with sample space

equa~l to a program input domain. In this case detectability depends on the

program under analysis and is determined by its failure density.
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We note that probabilistic detectability may involve components from

several sampling processes.

Trustablllty and Fault Class Frequencies

We can incorporate fault frequencies into the trustability approach, resulting

in a more refined measure of trustability. Suppose that, for some program

sample space, ~ is the probability of a program p occurring that has one or

more faults and D is the detectability of an evaluation method M. The

probability of our having a program with faults in it, and our not detecting

one or more of those faults using M, is f(l – D). Hence, if we apply M to p,

we can say that p has no faults with trustability at least T where

T= I–f(l -D).

If fault frequencies are available, we can use them to establish a base-line

level of program confidence, before any testing or analysis has been done.

This null-experiment level of trustability is defined by the formula

T= I–f.

The incorporation of fault class frequencies into the trustability model is

important since it allows us to model more accurately the ways in which

programmers apply fault detection methods to programs: they identify the

more commonly occurring classes of problems, and apply those methods

which their experience indicates are most effective.

Trustability and Multiple Fault Classes

Suppose that we have a single method M with detectability D~ for fault

classes Fj having occurrence frequencies ~, 1 s j < s. Let F be the union of

the fault classes. Then we may wish to determine what level of trustability

for F we can have if we apply the method to each fault class and find no fault.

We can show that trustability will be at least T, where

The above formula is a special case of a more general formula whose

correctness is discussed below.

Trustability and Multiple Methods

Here, we consider the possibility that we may have more than one method for

some class of faults F with fault frequency f. Suppose that M,, 1 s i s r, are
a set of methods with detectability D, for F. Assume that we apply the

methods “in parallel” to copies of the program drawn from the program

sample space. Then the probability of there being a fault of type F in a

program, and our not detecting it in the application of the r methods, is at

most

f(minl~, ~,{(l -D,)}).

This means that trustability is at least T where

T = 1 – f(minl S,<,{ (l-D,)}),
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i.e., is that which is achieved by the method with the highest level of

detectability.

In the case of multiple methods, it would be nice if they had a “cumulative”

effect so that if we had two methods Ml and Mz with detectability D, and

Dz, and we did not see any faults when they were applied, we could say that

the probability of this happening was at most

(1 -D,)(1 -D,).

In general, this formula will not hold since it may involve probabilistic

detectability factors based on sampling over a program space. To get a

cumulative effect we would have to sample twice, and DI and Dz would be

estimates for different programs. However, the desired cumulative effect can

be achieved under certain circumstances, In general, it requires that the

probabilistic detectability factors for the two methods involve independent

sampling. For example, suppose that Dz is the detectability of Mz for finding

faults that are not discovered by an application of Ml, i.e., Dz is the

detectability of Mz relative to MI. Then the probability of selecting a program

with faults, and of not finding all of the fault by Ml, and then not finding all

those faults not found by Ml by using Mz, will be

f(l -D,)(l -D,).

Thle multiplicative effect can also be achieved under the following circum-

stances. Suppose that Ml is a method whose probabilistic detectability factor

depends on sampling over the program space, and that Mz has detectability

for which the probabilistic factor depends only on sampling over an input

domain space.

The cumulative effect is also achieved when a repeatable method, such as

random testing, is applied where repeated applications to a program can be

assumed to have independent fault-revealing effectiveness. If D is the de-

tectability of random testing for some class of faults, whose probabilistic

aspect depends only on sampling over the input space, then the probability of

not finding a fault in N independent samples will be

(1 - D)~,

and the occurrence of IV fault-free tests would give us trustability

l–(l– D)~

for that class,

Trustability and Multiple Fault Classes and Methods

Here we consider the general case where we have multiple methods that are

each~ effective for multiple fault classes.

D4?finition. .%ppo~e that M,, 1< i < r, is a program evaluation method,

F], :1 <j s s, a fault class, and Ph, 1 < k < t, a class of programs. Then

D , ,j, ~, the detectability of method M, for faults in fault class Fj occurring in

programs of class P~, is the probability that M, will detect a fault of class Fl
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in a program p from P~, if p contains such a fault. If only a single program

class P is involved, then D, ~, 1< i < r, 1< j < S, will denote the detectabil-

ity of method M, for fault ciassFj.

In the following definitions and theorems, we assume the existence of a set

of methods Ml, 1 < i < r, that can be applied to a program p from a class of

programs P. The methods M, are assumed to have detectability D,,~ for

detecting faults from fault class Fj in programs from P, where 1< i s r,

1< j < s. F is defined to be the union of the fault classes Fj, and ~ is the

probability of occurrence for fault class F~. The fault classes do not have to be

disjoint.

Definition. A testing and analysis strategy S is a vector (N,), 1< i < r,

where N, is an integer equal to O or 1, indicating whether or not method ML

is applied, called the method usage factor for Ml.

The choice of a value of O for a strategy component might occur for several

reasons. If the estimated frequency for a fault class is low, then it is possible

that the effort in using a method whose only purpose is to detect faults of that

kind is wasted and could be better used for some other class.

THEOREM 2.1 (GENERAL TRUSTABILITY FORMULA). Suppose that p is a pro-

gram under analysis. Suppose that S is a testing and analysis strategy for p.

If we see no (additional) faults in the application of the strategy S top, then,

for faults F, p has trustability at least T, where

PROOF. As above, when we have multiple methods for a fault class, we

assume that they are all applied in parallel, or independently, to the pro-

gram, if they have empirical detectability factors. The probability q~ that a

fault from class F] is present and that methods do not detect all the faults

from that class is less than the probability that no single method detects the

faults from that class and has the property

This implies that the probability q that a fault from one or more fault class

F] is present, and is not detected, is given by

Combining the above formulae, if no faults of type F are discovered by S then

we can say that p has trustability at least T, where T is as defined in the

statement of the theorem. ❑

Optimal Software Evaluation Strategies

Two basic situations will be considered. In the first, we have a cost budget B

and a given set of fault classes and methods, and we want to establish the

maximum trustability for a program p at cost less than or equal to B. In the
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second situation, we want to establish a predetermined level of trustability L

with minimum cost.

Definition. For a program p, and a method M,, denote the cost of apply-

ing the method to p as Ci( p). Suppose that S is a strategy for a set of

methods Mi, 1 < i < r, with usage factors IVl, 1 < i < r. Then the cost of

applying S to p is given by

C = ~N,C,(p).
~=1

Suppose that S is a strategy with usage factors Ni, 1< i < r, and that T is a

trustability guarantee formula. The strategy S is said to support a trustabil-

ity guarantee T at L, if T > L when it is evaluated using strategy S.

Definition. Suppose that B is a cost bound. Then an optimal cost B

trustability strategy for a program p, and for some trustability guarantee T,

is a maximum trustability guarantee strategy whose cost for p is less than or

equal to B.

It is noted that for any nonnegative cost, there is a strategy that can

achieve that cost, namely the null strategy (i.e., set all factors NL, 1 < i < r,

to zero).

Definition. Assume that L is some desired level of trustability and that T

is some trustability guarantee formula. Then an optimal cost strategy for

supporting T at L is a minimum cost strategy that will support T at L.

Determination of Strategies for Optimal Trwstability and Cost

In this section we assume that we have a finite set of possible methods. In the

general case, where we have multiple methods and fault classes, trustability

optimization problems are NP-hard [Howden and Huang 1993]. There are

various heuristics, corresponding to simplified instances of the general case,

that can be used to produce tractable optimization problems.

One possible heuristic corresponds to the idealized situation where, for

each fault class, there is only one effective method, i.e., method with de-

tectability >0. A method maybe effective for more than one fault class. If we

have a situation where (1) we have a collection of potential methods and (2)

more than one method is effective (i.e., detectability is nonzero) for one or

more fault classes then we could use the following heuristic. For each fault

class FJ, 1< j < s, we identify a method Mn(Jl for which Dmtj,,j is is

maximal. We then generate modified detectability figures D;, ~ for methods

M, and fault classes ~, as follows. For i = m(j) set D,, j = D,,~, and for

i # m(j) set D~, j =0,15 i5r,15j5s,

If the detectability matrix is altered as described above, the general

trustability guarantee formula can be replaced with the simplified, multiple
method formula
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where M~LJ1 is the unique fault detection method having a nonzero de-

tectability factor for fault class Fj.

Another possible heuristic corresponds to the idealized situation where

each fault class is associated with a unique subset of methods that are

effective for that fault class, and not for other fault classes. If we use the

heuristic, for a general detectability matrix D we would define a new

detectability matrix D’ from D as follows. For each fault class j, identify a

unique subset set(j) of the methods. For all indices i in set(j) let D;, ~ = D, ~,

and for all indices i not in set(j) let D;, ~ = O. This heuristic will not result in

a simpler trustability guarantee formula, but it will result in a tractable

optimization problem.

The following theorems describe methods for determining an optimal strat-

egy and cost bound for the first of the two idealized problems described above.

Similar theorems can also be proved for the second of the simplified prob-

lems, in which each fault class is associated with a unique subset of methods,

In the following, we assume the existence of a detectability matrix having

the properties of the first of the two tractable, idealized problems described

above.

THEOREM 2.2 (OPTIMAL TRUSTABILITY). Suppose that B is a strategy cost

bound. Recall that F is the union of the fault classes under consideration. An

optimal cost B strategy can be determined using the following simple algo-

rithm:

Initially set all usage factors N,, 1< i s r, to zero. Define a set of variables TJ,
1< j s s, called the trustability factors, and initialize TJ ~ ~. Determine a value
of j for which the trustability factor is largest, say k, and If Nm~k, is O set it to 1.
In addition, update Th by multiplying it by (1 – D~tkl, ~ ). If there is more than

one value of j for which the trustability factor is 1argest, choose one arbitrarily.
Continue this process while the sum of the cost factors C,( p) N,, 1 s i < r, is less

than the cost allocation bound B.

In the above process, if the maximum trustability factor T~ at some stage is
associated with a method that has already been used (i.e., its usage factor is
already set to 1), if the maximum trustability factor is associated with a de-
tectability factor equal to O (corresponding to fault classes for which we have no
method), or if the maximum trustability factor is itself zero (due to detectability
factors equal to 1 and/or frequency factors equal to zero), then no further
improvements in the trustabilit y guarantee can be made, and the algorithm can
halt without continuing on until the cost bound is reached. The algorithm can also
halt if the maximum trustability factors are such that the cost bound will be
exceeded before all of the methods aafiociated with the maximum trustability

factors could be applied.

PROOF. The optimal allocation of resources will involve choosing or not

choosing each of the r methods M,. We can prove the theorem by proving the

following property Pm of the algorithm: the choices made by the algorithm up

to and including the mth choice, 1 s m, also occur in some optimal choice. We

prove Pm by induction on m.
At each stage of the algorithm, the value of the trustability bound com-

puted with choices made up to that stage is referred to as the partially
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computed trustability bound. Initially it is computed from the formula with

the strategy factors N,, 1 s i < r, all set to zero.

Consider the case where m = 1.We show that if the algorithm terminates

at this stage it terminates correctly. If it does not terminate, the choice it

makes is part of an optimal strategy.

Suppose that D~, the detectability factor associated with a maximal trusta-

bility factor Th, is zero. Then we have the situation where no method can

increase the partially computed trustability bound so that the algorithm can

terminate, and trivially produces an optimal allocation in which no methods

are applied. This is also true for the artificial case where the maximal

trustability factor is zero, which in this case would require that all fault

frequencies be zero.

Consider now the other cases where the method detectability factors associ-

ated with the maximal trustability factors T~ are nonzero, and the trustabil-

ity factors are nonzero. There are two possibilities. One is that we have

enough resources to allow an application of each of the methods associated

with all such factors, and the other is that we do not. Consider the first case.

Frolm the definition for the trustability formula, we see that we must eventu-

ally make an application of each of these methods in order to increase

trustability beyond that achieved before any methods are applied, so that any

such allocation in the first step must be part of an optimal allocation. This is

because the maximal frequency factors fh determine the partially computed

trustability bound when no tests have been allocated, and applications of

other methods M, for i + k will only, at best, decrease the nonmaximal

trustability factors associated with those methods.

In the case where there are not enough resources to apply all of the

methods associated with the maximal factors, then the trustability bound will

be determined by the value of the maximal factors. No set of method

applications that does not exceed bounds can increase the initial partially

computed trustability bound achieved with no applications, so that the

algorithm can terminate.

The proof of the inductive case for m > 1 is similar to that for m = 1. ❑

A theorem can also be stated for the related problem of determining the

minimum cost strategy for achieving some required level of trustability. The

proaf of the theorem is simple and is not included.

‘1’HEOREM 2.3 (OPTIMAL COST). If there is some strategy that will support a

trustability bound T for a program p, then the cost C of the optimal cost

strategy for achieving T is

L’= ~c,(p)lv,,
i=l

where C,(p) is the cost of applying method M, to p and where the N, can be
determined as follows. For each fault class F], 1 < j < s, determine the

minimum integer value of O or 1 for n~, 1 <J’ < s, for which
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is satisfied. The assumed existence of a supporting strategy guarantees the

existence of a value of n] satisfying these constraints. For each method M,,
I < i <r, let N, = max(l~j~.,~(~)=,) J{n ] In addition to giving the minimum

cost, the usage factors N, also give the optimal cost strategy.

3. APPLICATION ISSUES

Integration of Methods

Many authors have suggested the integrated use of a collection of methods for

verification and validation, since each may be useful for different kinds of

faults. The trustability/detectability approach is a possible framework for

integration. It allows for the inclusion of both analysis and testing methods,

and of techniques that are used early in a development effort such as design

validation, as well as methods that are applied to code. It suggests that we

may incorporate both formal and informal methods and tailor an approach to

a particular class of programs and/or class faults.

Empirical Fault Frequency and Detectability Factors

It may be argued that fault frequency factors will not be readily available. It

is possible to use the method without fault frequency factors, but even the

simplest kind of information can be useful. For example, in a given environ-

ment, with observations of the kinds of faults that we expect to occur, we

might develop a set of methods which deterministically detects those kinds of

faults. At some point we may observe that these methods will work “most of

the time,” which corresponds to assuming that the frequency and the occur-

rence of faults which lie outside the scope of the methods is bounded by some

probability. In this situation, all that is required is the willingness to be

specific about this assumption, by making an estimate of this bound. In

practice, these are the kinds of factors that programmers and maintainers

use in making decisions about the choice and use of methods, and the

requirement that such an estimate be made does not seem excessive. In any

case, even when it is either impossible or unacceptable to make such an

estimate, the trustability framework can be used to compute the frequency

bound that is necessary for a certain level of trustability to be assumed.

It may also be argued that we will, in general, not know the detectability

for probabilistic methods whose probabilistic factor depends cm sampling over

a program space. For example, it may seem unreasonable or imprecise to use

empirical data about the effectiveness of methods gathered over multiple

projects.

We first note that, in general, people will use methods that have been

found to work for problems which are most likely to occur, so that the

trustability model seems to be a good qualitative characterization of common

practice. Its advantage is that it identifies estimates that would have to be

made to permit quantification, and identifies valuable data whose collection

should be part of any mature software development process. As in the case of

fault frequency data, even in those cases where data is not available, it is
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usef~d in allowing us to consider “what if” questions. For example, we can

ask “if we have the following trustability requirement, then what are the

mini mal detectability factors that we have to assume for the following set of

methlods in order to achieve that trustability level?” or “if we make the

following assumptions about method detectability levels and costs, what is

the maximal level of trustability that can be achieved for a certain allowable

maximal cost?”

Empirical data is used in a variety of software engineering metrics. It is,

for example, the basis of all cost estimation models in which costs of previous,

similar projects are used to predict costs of future projects. It is also used in

standard reliability engineering models, such as those described by Muss

et al. [1990]. In this case, past experience is used to justify the use of

paralmeterized formulae which predict mean time between failures on the

basis of the observed behavior of a program. The use of empirical information

for trustability estimation is consistent with these uses of empirical data in

other areas of software engineering. In this article we have described a very

simp [e version of the trustability paradigm. Accurate empirical estimates

may require more sophisticated measures of fault frequency or detectability

that are more sensitive to a program or system under analysis. We briefly

describe several possible alternatives here. Additional possibilities can be

suggested that are based on research in defect classification such as that

described by Chillarege et al [1992].

Testability and Detectability. Approaches to the estimation of detectabil-

ity falctors may be customized for particular programs using the testability

approach [Voas 1992; Voas and Miller 1992]. In the testability approach, a

program p is seeded with faults, and then a method of interest is applied to

determine its effectiveness in finding those faults. This information is used to

provide a more accurate estimate of the effectiveness of a method M for p

than would be available from estimates constructed entirely from information

about the discovery of faults by M in programs other than p, When a

standlard method, such as random testing, is applied to a given program, the

effectiveness of the method can be associated with the program and is

referred to as the program’s testability [Voas 1992]. A highly testable pro-

gram is one for which the seeded errors are easily found and for which we

then conclude that the probability of finding a fault when one is present is

also high.

Parametrized Fault Frequency and Detectability. In our simple trustabil-

ity model we can use program properties when estimating fault frequencies

and cletectability factors since we can include the consideration of classes of

programs and classes of faults. In the parameterized approach we include

measurable properties of individual programs in the detectability formula.
For example, program complexity, using cyclomatic numbers, might be found

to have an effect on fault frequency or detectability, and through empirical

studies that correlate method effectiveness and complexity, we may be able to

construct formulae that take such properties into account.

ACM Transactions on Software Engineering and Methodology, Vol. 4, No. 1, January 1995.



56 . Software Trustablllty Analysis

Process Feedback Fault Frequency. In this approach, formulae are used to

incorporate factors into fault frequency formulae that are derived during the

fault detection process. For example, it might be observed that the more

faults that a module is discovered to have, the more undiscovered faults are

likely to remain, It may be possible to construct fault frequency formulae

which have the number of detected faults as a parameter,

Process Feedback Detectability. We may be able to construct detectability

formulae that factor in the expenditure of resources. For example, suppose

that inspections are used to detect faults. In the simple model of trustability

described in the earlier sections of the article, we would have some stopping

rule, such as “keep applying inspections until no faults are found,” On the

basis of experience, we would estimate the probability that such a process

would find all faults, when faults are present. More-elaborate measures of

detectability might factor in the number of inspections that were needed

before a fault-free inspection occurred. If we use a stopping rule that requires

repeated successful inspections, it might also have a parameter correspond-

ing to the number of successful repeated inspections.

Fault Repair and Retest

Suppose that we use probabilistic detectability factors that are based on

sampling from a program space. If we use a method that has such a

detectability factor, apply it to a program, and then repair the program if a

fault is found, it may seem that we can no longer use the detectability factor

in reapplications of the method since the program under analysis is no longer

a “random” sample from the program space. This problem is solved, as

indicated above, by assuming that methods are associated with stopping

rules, and that detectability measures the probability of finding a fault when

the method is successively reapplied until the stopping criteria is satisfied. In

the case where multiple methods are applied to the same fault class, or to

nonindependent classes, we need either to assume that they are applied in

parallel, or that detectability figures are constructed relative to a fixed

process in which methods are applied in a given sequence, In this case, the

detectability figure for a later method is measured relative to programs

inherited from earlier methods.

It is noted that in the case where different methods are used for different,

independent fault classes, then we can assume that the application of one
method to a program, and the possible consequent modification of that

program, will not decrease the detectability factor for other methods, and the

problem described above will not occur.

Similar remarks can be made about fault frequencies. The frequency of a

fault is the probability that a program (from the program sample space) will

have a fault. If we apply a method Mz to a program after the application of

method Ml, we will need to use a frequency factor for the application of Mz

that corresponds to the probability of a fault occurring in a program that was

selected from the program space and then analyzed (and possibly modified)

using Ml. Again, if fault classes are disjoint and independent, we can assume
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(1) that fixing a fault from one class does not change the frequency factor for

faults for some other class and (2) that fault repair does not cause a problem.

Trustability and Operational Reliability

Operational reliability refers to the probability that a program will fail when

it is executed over its operational distribution. Trustability can be viewed as

an extreme case of operational dependability. Suppose that p is a program.

Define a set of faults that will cause p to fail with probability larger than d,

when the program is executed over its operational distribution, to be a

frequent-failure fault set with failure density factor d. Reliability considera-

tions demand that we have a certain level of confidence that the set of

remi~ining faults in a program is not a frequent-failure fault set. If we have

trustability T for faults of type F, then we can be at least !/’ confident in the

absence of a frequent-failure fault set of type F for any density factor d,

d >0, i.e., we can have confidence T that the failure density for p, due to

faults of type F, is less than d for all d >0.

We can combine the use of “absolute” trustability measurement methods

with operational reliability measurement as follows. Suppose that we wish to

conclude for a program p, with confidence T, that the failure density caused

by faults of type F is less than some density bound d. Assume that we have a

method or set of methods M for detecting faults of type F, and suppose that

we can use M on p to establish trustability

T>l–x

for J’. This means that when we use M, the probability of our making a

mistake in asserting that p is free of faults of type F is less than x.

Suppose that we run N random tests on p, selected using the operational

distribution, and see no failures of type F. On the basis of this event, we

assume that we can say with confidence at least

I–(l–d)N

that the failure density for p is less than d. The probability of incorrectly

making this statement on the basis of the outcome of random testing, when it

is false, is at most

(1 – d)N.

Suplpose that we now combine M with random testing. In the combined

approach we will say that the failure density of a program is less than d if M

indicates that is free of faults and if random testing is failure free. The

probability of our making this statement when it is false is equal to the

probability of coming to a false conclusion for both M and random testing,

which is at most

x(1 – d)N

so that, in the combined method, we can have confidence of at least

1 –x(1 –d)N

that the failure density is less than d.
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This formula can be used to determine the number of (failure-free) tests

that are needed to guarantee a reliability level d. From this formula we see

that trustability-oriented methods can be used to establish a reliability

base-line, from which operational testing can be used to ensure, with fewer

tests than would otherwise be required, a specified level of operational

reliability. The trustability model allows us to consider ways in which testing

may be made more efficient, through the use of such reliability base-lines.

Our technique for including operational dependability in the trustability

model is based on ideas found in the simple reliability model mentioned

earlier, in which we establish confidence in bounds on failure densities

[Howden 1987]. In that approach, if we run a set of N tests that are selected

over a program’s operational distribution, and see no failures, then we say

that we have confidence 1 – (1 – B)N that the failure density is bounded

above by B, since the risk of stating that the failure density is less than B is

the probability of seeing N failure-free tests when in fact the failure density

bound is larger than B. The number of tests needed to give a certain level of

trustability for a given bound can be easily determined. The confidence-based

model for bounds on failure densities has been recently discussed, along with

several refinements and with work on techniques for describing operational

distributions, in Woit [1993]. More-sophisticated reliability models, such as

those that involve mean time between failure, will correspond to more-

sophisticated ways of measuring trustability and of incorporating operational

dependability into trustability measurement.

Trustability and the Software Process

In the previous sections, we focused on detectability factors for program

analysis methods and associated detectability measures with program and

fault classes. In general, we will need also to associate them with a software

process. For example, the requirements and design methods that are used

during the development of a program will affect the space from which the

program is “selected’ and hence the detectability factors for program analysis

methods that are estimated over that space.

We need to consider methods for analyzing other products, such as designs

and requirements. Suppose that we define a design fault in a program as one

which can be traced back to a flaw in the design. One of the methods for

detecting such faults will be design analysis. We cannot assume that design
analysis is carried out in parallel with, and independently of, program

analysis since it will be carried out before programming begins. One approach

is to assume that development occurs in stages. In one stage, for example, we

“select” a design that will have faults with certain frequencies, and for which

evaluation methods will have certain detectability factors. In another, we

“select” a program and assume similar information. As in the discussion of

fault repair we could assume that empirical parameters like fault frequency

and empirical detectability are determined relative to a process in which

certain kinds of products are generated in different stages, and certain kinds

of evaluation methods used in those stages.
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Examples of the Application of the Trustability Model

The following simple examples illustrate ways in which the trustability

mod el might be used. We first begin by showing how trustability can be

related to the use of branch coverage, one of the most commonly used testing

techniques.

Example 3.1 Complete Coverage and Trustability. Suppose that some form

of test coverage method M is to be used, such as branch coverage. Let F be

the set of faults whose presence in a program is guaranteed to be revealed if

the program is tested over any set of tests which causes 100’70 coverage.

Assume that we test a program, repair faults, and retest until all faults that

can be found by a 100% coverage set are removed. Note that it is not

necessary to reapply the method with different 10Q% coverage test sets, since

F ccmsists of faults guaranteed to be revealed by any 100% test set. Let F’ be

the complement of this set, and let f’ be the frequency of occurrence of faults

in F’. F corresponds to the occurrence of programs which contain faults that

are not (necessarily) revealed by a 100% coverage test set.

Now the detectability of the coverage-oriented testing method is 1 for the

fault class F. The class of remaining faults F’ can be thought of as being

associated with the use of the null method, having detectability O. The

frequency of F’ is f’. Applying the formulae given above, we find that we can

have trustability of at least 1 – f’ in a program that is analyzed using M.

Example 3.2 Using Coverage to Make Statistical Testing More Efficient.

Suppose that it is desired to attain a 99% level of confidence in a 17. bound

on the failure density for a program. In the simple reliability model refer-

enced above in the section on trustability and operational reliability, we

would need to run N failure-free tests, where N is defined by

0.99 = 1 – (1 – O.O1)N.

From this formula we can see that N would need to be at least 461,

Suppose that, based on our experience with the combined use of informal

functional and branch testing for a class of programs developed in the given

environment, we estimate that we can be 90% confident that there are no

faults of any kind. Then we can use the following formula to determine the

additional number of acceptance tests needed to raise our confidence level to

0.99, for absence of faults that would cause a failure to occur with probability

greater than 0.01

0.99 = 1 – (1 – 0.9)(1 – O.O1)M = 1 – 0.1(1 – o.ol)~f.

This will require that M be at least 230, or only half as large as when

random testing is used by itself.

Example 3.3 Combinations of Life Cycle Methods. In this speculative,

artificial example, we illustrate how the trustability model might be used to

comlbine trustability information from different phases of a software develop-

ment process. The trustability calculations used here do not correspond
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exactly to the trustability guarantee formulae of the earlier sections, but are

derived directly from them,

We assume that a software company keeps track of problems that occur

and tracks them to their source. Three broad classes of process-oriented fault

classes are used: requirements, design, and programming. Faults tracked to

requirements sources are generally functional in nature; design faults are

interface or algorithm design problems; and programming faults are state-

ment oriented but may include other problems such as initialization,

Within the class of programming faults, there is a further, method-oriented

classification into mutation and nonmutation faults,

It is observed that there is a 0.01 chance that a requirements fault will not

be detected in the requirements analysis phase, a 0.005 chance that a design

fault will not be detected during design, and a 0.5 change that a requirements

fault not detected during requirements will also not be detected during

design. Since there are almost always both requirements and design faults

(that usually get corrected) the fault frequency for these kinds of faults is 1.

Programming faults are also common, but they are divided into two sub-

classes. It is observed that there is a 0.3 chance that a program will contain

mutation faults and that for these faults mutation testing is 10070 effective.

For nonmutation faults, mutation testing has been found to be 0.7 effective,

through some apparent coupling process between mutation and nonmutation

faults. In addition to mutation testing, functional testing is used. It appears

to be 0.98 effective for those faults not found by mutation testing. In addition,

the combination of mutation and functional testing has been found to be 0.5

effective for requirements or design analysis, and also 0.5 effective for design

faults not found in design analysis.

The information in Table I can be used to compute trustability, as follows.

Trustability

= 1 – max{(l – 0.99)(1 - 0.5)(1 – 0.5),(1 – 0.995)(1 - 0.5),

max{().3(1 – 1), o.’i’(I – 0.7)(1 – 0.98)}}

= 1 – max{O.0025, 0.0025, 0.0042} = 0.9958.

In this case, the trustability figure is dominated by the effectiveness of the

methods for programming faults.

Related Work

Previous work on detectability comparison for random and partition testing is

described in the papers of Hamlet and Taylor [1990], Weyuker and Jeng

[1991], and Frankl and Weyuker [1993].

Numerous papers have been published on reliability estimation and on

statistical testing of software, e.g., Muss et al. [1990]. However, our primary

concern here is the measurement of trustability, independently of whether

the methods that are used are statistical or not, and for brevity we only cite

very closely related work.

The two main ideas in the trustability model are the use of hypothesis

testing for confidence estimation and the use of conditional probabilities that
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Table I.

Fault Class Probability of occurrence Method(s) for Detection Detectability

requirements 1.0 requirements analysis

design analysis*

design

program testing”’

1.0 design analysis

programming*

pro= amming 0.3 mutation
(mutation)
programming 0.7 mutation
(nonmutation) functional*

0.99

0.5

05

0.995

0.5

1.0

0.7

0.98

‘ These effectiveness factors are relative to faults not found by earlier methods

indicate the effectiveness of methods. The first idea was used in Howden

[1987] to estimate confidence in failure density bounds and was referred to as

a measure of “probable correctness.” The same term was used in Hamlet

[1987], where confidence-based program dependability is also discussed. In

this case, the goal was to derive confidence through sampling over the textual

space for a program, rather than over its operational input domain.

The use of the confidence based approach to dependability estimation has

also occurred more recently in, for example, Hamlet and Voas [1993] and

Howden [1993]. The difficulty with all of the earlier, test-oriented applica-

tions of the confidence approach is the large numbers of tests needed for even

a modest level of confidence. This problem is solved by the second idea, the

use of conditional probabilities, but at the expense of having to make assump-

tions about a method’s fault-revealing effectiveness,

Thle concept of detectability in the trustability model is similar to that of

testability, which originated with hardware testing, e.g., Seth et al. [1990].

Hardware testability is the probability that a test of a circuit will reveal a
fault, if the circuit contains a fault. Voas and Miller were the first to associate

testability with software and to investigate different applications of the idea

in depth [Voas 1992; Voas and Miller 1992].

The difference between testability (for a program) and detectability (for a

method) is slight. However, the use of detectability has a significant effect on

the kinds of analysis it enables. It makes it possible to consider combinations

of tetsting and analysis methods and to incorporate fault class frequencies in

trustability formulae. These kinds of results do not occur in the work of Voas.

Voas has been primarily concerned with the testability of an individual

program, i.e., whether or not it is the kind of program that could easily “hide”

faults when tested using some method. He also considers what we have

defined to be trustability, but indirectly through the use of what he calls the

“squeeze play” [Voas and Miller 1992], and only through the use of random-
ized testing. The squeeze play can be dehed as follows. Suppose that we

know the trustability t of a program with respect to some random testing

method. Suppose that we apply the same testing method to establish an

upper bound estimate f, with confidence C, on the program’s failure density.
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If f < t, then we can say with confidence C that the program is free of faults,

since if it had a fault, t and f would be equal.

One of the principal ideas in the testability work is the development of

methods for estimating the detectability of a method for a particular pro-

gram. The approach, mentioned above, is to use seeded faults and to extrapo-

late to more-general fault classes. Although this maybe more expensive than

to use estimates based on previous applications of a method to different

programs, it may be more accurate.

The words “trustability” for confidence-based analysis and “detectability”

for method effectiveness were coined by the authors and first appeared in

Howden and Huang [1993]. The use of both detectability factors and fault

frequencies in computing trustability is original, as are the trustability

guarantee formulae, the identification of different kinds of detectability

factors, the relationship between trustability and reliability, the concept of a

frequent failure fault set, the idea of combining methods within a single

trustability framework, the formulation of the trustability optimization prob-

lems, and the optimization methods described in the theorems. A limited part

of this work was previously described in less general form by Howden [1993]

and Howden and Huang [1993].

CONCLUSIONS

The concepts of detectability and trustability provide a framework both for a

theoretical analysis of important issues in testing and for characterizing the

ways in which programmers make informal, practical decisions when at-

tempting to prevent and detect faults in programs.

The trustability model identifies necessary conditions for levels of confi-

dence in the absence of faults in a program. In those cases where numeric

parameters associated with those conditions are not known, the model is

useful in identifying assumptions that have to be made in order to establish

levels of confidence. It identifies the kinds of measurements that can be made

both across different projects and within a single project.

The theory and the examples given in the article indicate that in order to

establish high levels of dependability, we need to rely on either low fault

occurrence frequency, high detectability, or the use of methods whose effec-

tiveness has a multiplicative effect. The latter can be achieved with cumula-

tive methods, with methods having relative detectability factors, and with the
joint use of empirical and probabilistic methods.

The trustability model which was presented is general, and it is possible to

use restricted parts of it. The general model was created to allow a diverse set

of situations to be accommodated within a single framework.

A variety of topics for further research and development can be identified.

They include, for example, the use of the concept of detectability to character-

ize additional situations in which one method is more effective than another.

We can also investigate the development of a refined trustability model, one

in which methods are not identified with a single detectability coefficient, but

with more-complex measures such as those suggested above in the section on
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empirical detectability factors. Finally, research on methods for the determi-

nation of detectability factors can be pursued.
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