

SUPERFIT COMBINATIONAL ELUSIVE BUG DETECTION

R. Barzin, S. Fukushima, W. Howden, and S. Sharifi
CSE, UCSD, La Jolla, CA, 92075

Abstract

 Software that has been well tested and analyzed
may fail unpredictably when a certain
combination of conditions occurs. In Bounded
Exhaustive Testing (BET) all combinations are
tested on reduced versions of a
problem/application with the idea that bugs
associated with combinations for full versions of
a program may also show up when combinations
are tested for the reduced version. In previous
work, a class oriented JUnit framework
approach to BET was introduced, along with the
idea of a BET test pattern. In this paper we
considered the application of BET to system
testing, using an extension of the FIT
(Framework for Integrated Testing) framework
called SuperFIT. This approach is described
along with a simple example of the application of
a SuperFIT test generation tool.

Keywords testing, bugs, elusive, patterns,
combinations, frameworks, JUnit, BETUnit, FIT,
SuperFIT

1. Elusive bugs, partition testing and
BET

 The characteristic feature of an elusive
bug is that it is caused by a combination of
conditions that are not reflected in functional
specifications. Elusive bugs are not reliably
detected using single-property partition testing
rules such as "test each functional input
partition", "test each partition boundary". Even
sophisticated boundary analysis approaches may
miss the relevant test [1]. In [5], Hamlet
described a formal basis for analyzing the
limitations of partition testing [5]. Relevant
analysis is also described by Weyuker and Jeng
in [6].
 Partition testing was extended using
approaches that try to identify "meaningful"
combinations. In [2], Richardson combined
specification conditions with implementation
conditions. Other work introduced the use of

cause-effect graphs, which identify functionally
relevant combinations from specifications [3].
Ostrand provided a language and test generation
tool that facilitated the generation of
combinational tests that were implicitly defined
in a test specification [4].
 The combination problem has also been
attacked using combinationally oriented
program coverage measures, such as data flow
testing, in which pairs or groups of statements
that have a data flow relationship must be tested
together on at least one test [e.g. 7-9].
Unfortunately, data flow testing has not been
reported as being markedly more effective than
ordinary branch and coverage testing [10].
Also, we have the following problem: if the
defect in the code is the omission of a condition
that is part of the combination that causes the
problem, then the required test will not be
produced.
 Defect-catalog approaches to test
selection attempt to categorize and list classes of
potential bugs in particular application areas.
They may also include associated test
specifications. The catalog approach was
systematically described by Marick in [11].
More recent work, aimed at specific application
areas, can be found in publications such as [12].
In [13] Binder gave an in-depth description of a
pattern-oriented approach to the description of
testing methodology. In [14] Howden
investigated a pattern-oriented cataloging
approach that was specifically aimed at
combinational tests for the detection of elusive
bugs. Although this pattern-based approach was
found to be useful, there were difficulties. It was
not easy to classify defects into meaningful
classes and to create a hierarchy that made them
easily retrievable. More importantly, the
approach involves constructing descriptions of
defect revealing tests after such defects occur,
when what we really want is to have patterns for
those defects that have not yet occurred. To
some extent, this is avoided by generalizing to
classes of defects, but elusive bugs often
correspond to some new application specific
peculiarity.

 An alternative approach is to try testing
"all combinations" in a limited version of an
application, with the hope that failures that are
caused by combinations in a full version are also
caused by combinations in the limited version.
This idea was present in an early form in the
work on path-oriented testing methods.
Symbolic evaluation testing methods, for
example, examined all paths up to some number
of loop iterations, with the idea that bugs would
show up on limited versions of the application
that only required small numbers of loop
iterations. [e.g. 15-19]. This idea of testing
limited versions of an application that
correspond to some small number of iterations of
a loop is a well known method [20].
 In more recent research, data-oriented
instantiations of the limited problem approach
are referred to as BET (Bounded Exhaustive
Testing). The assumption that bugs which show
up in larger versions of a problem will also show
up in some smaller version has come to be called
"the bounded testing hypothesis" [23]. In its
modern form, BET differs from the path-oriented
work in that it involves direct generation of test
data combinations, rather than indirect
generation from a set of control paths.
Automated test generation was found to be
difficult in the path oriented approach.
 References [21, 22] describe modern
BET approaches. Both include class testing
tools. They work directly with application class
descriptions to produce all instances of data and
class structures up to some size, which are then
used to automatically test instances of an
application class.
 The work that is described here follows
the BET approach to the detection of elusive
bugs. It differs from earlier BET work in that it
is framework based. The initial work on BET
frameworks, described in [24], was class
oriented, and produced an extension to JUnit
called BETUnit. Frameworks based on JUnit 3.8
and 4.1 were developed. Both allow the
definition of combinational test cases and test
suites that can be automatically run using an
associated test runner.
 The advantages of the framework
approach include the easy incorporation of
alternative "domain generator" plug-ins that
allow a tester to use different combinational
strategies for test generation. This differs from
the approach used in the Korat tool [20], for
example, which contain fixed, built-in
combinational mechanisms, which may not
directed enough when the goal is to test over

particular kinds of promising combinations.
Simple domain generators return the elements of
a simple finite sequence, one at a time. More
complex generators can be built from simple or
other complex generators and may return
structures or combinations. Combinational
generators include "all-permutations", "all
stratified permutations", and "all-pairs". The
framework approach is also convenient to use
because of its reliance on test fixtures. By
fixtures, we mean code that maps a test
specification onto program execution. This
"delinking" of test descriptions and application
execution facilitates the use of new
implementations of the same test, or
alternatively, reuse of application dependent test
code in new tests.
 In both the earlier and the current work,
a pattern-oriented approach was adopted. The
tester identifies testing situations in which BET
testing may be useful and then constructs test
cases with a BET component. These are
constructed within the relevant framework, using
automated test generation and execution. Test
patterns guide the tester in performing required
test construction tasks, and suggest alternative
kinds of strategies. In our research on JUnit
BET we found that test patterns may contain
both a test generation and an associated test
oracle component. Certain kinds of test
generators go with certain kinds of oracles. For
example, BETUnit test generators were used that
generate abstract metadata along with tests. The
metadata can be used to construct an abstract,
partial program simulator that acts as an oracle.
Several kinds of such patterns were identified in
the BETUnit research.
 Our previous BET work focuses on
class oriented automated testing. The work in
this paper describes the application of the
framework strategy to systems testing, and is
based on the FIT framework.

2. SuperFit
2.1 Introduction

 In an interactive application the
program starts in a particular state and then goes
through a sequence of intermediate states as a
sequence of user steps is performed. We
normally try to test each state, or even all
possible pairs of states, but it is usually not
possible to test all possible sequences of states.
Elusive bugs have been observed which occur
when steps are performed in particular

sequences. SuperFIT is a framework for
automatically generating and testing all possible
sequences up to some predetermined length.
Our approach to the specification of test step
sequences, and hence the basis for SuperFIT, is
the FIT testing framework [25].

2.2 Review of FIT (Framework for
Integrated Testing)

 FIT belongs to the general class of
table-driven testing methods. Tables specify
sequences of steps. The steps are meant to be
application dependent but independent of test
code. A major idea in the approach is that tables
can be constructed and understood by non-
programmers. Each step has to be mapped on to
the application under test.
 In FIT there are several kinds of tables,
but we will only consider action tables here.
Each FIT action table is associated with an
action table fixture. The fixture has methods
whose names correspond to the steps in the table.
A table test runner executes the steps in a test by
calling the methods in the associated fixture.
 FIT action tables have four kinds of
steps: start, press, enter and check. Each step in
the table starts with one of the four action
keywords. This is followed by the name of the
associated fixture method, and then any
appropriate parameters.
 A start step is followed by the name of
the fixture class to be used for the table. An
enter step is followed by the name of a method,
and then a list of the input parameters for that
method. A press step has a method name, but no
parameters. A check step names a method that
returns a value that is compared with the
parameter in the step. It functions as an
assertion, or test oracle, that confirms the validity
of computed intermediate and final values.

2.3 Basic structure of SuperFIT

 The core of the SuperFIT approach is
the test generation model and model traverser.
The model is a directed graph, similar to those
used in model-based testing [eg. 26-29]. Tests
are generated by traversing the graph. SuperFIT
models differ in that they incorporate test
fixtures, and are test generation models rather
than specifications. The SuperFIT test generator
traverses paths in the model graph, using a
depth-first strategy, up to some predetermined

path length. For each path, it generates a FIT
test table.
 SuperFIT model edges can be labeled
with three kinds of steps: Start, Feasibility and
Generate. As in FIT, the Start step identifies a
test fixture to be used for interpreting the other
steps in the model. Also, as in FIT, the other
steps identify methods in the test fixture. If an
identified method has parameters, values for
these will appear in the associated SuperFIT
step.
 Feasibility steps identify a method that
is used to see if the current transition is
"feasible" in the context of the traversed subpath
which has led to that transition. This is
necessary because SuperFIT models can be
abstract in the sense that, depending on the
context leading to a step, a next step may or may
not be possible in the actual system. If a
Feasibility step returns F, then the associated
transition is not followed and the test generator
backs up the last branch point at which there is
an unfollowed transition.
 SuperFIT fixture methods associated
with Generate steps construct FIT table steps. In
many cases, a Generate step will simply copy an
identified FIT step. Some FIT steps, such as
enter steps have input parameters. SuperFIT
Generate steps can identify either simple input
parameters, or domain generators that can be
used to generate a finite set of possible
alternatives. Suppose, for example, that a domain
generator g() is identified in a Generate step for a
FIT enter step. The SuperFIT model traverser
will generate instances of the enter step for each
of the elements returned by g(). When the
SuperFIT graph traverser is in backup mode,
backing up to a previously unexplored
alternative, it will initiate a new path for either
an unfollowed graph transition, or an unused
domain generator alternative.
 Additional, more sophisticated model
features are also possible. For example, model
transitions having both a Feasibility and a
Generator step may specify a Generate fixture
method that depends on data returned by the
Feasibility method.
 Feasibility steps are similar to guard
conditions in state models. In some examples of
model-based testing, all model paths are feasible
[e.g. 32] so that feasibility is not an issue. In
others, embedded directives avoid the generation
of infeasible paths [e.g. 30]. Others construct a
set of constraints from path conditions whose
solution corresponds to a test that causes that
path to be followed [e.g. 29]. In this last case,

infeasibility corresponds to constraint sets with
no solution. The constraint set approach to
model-based test generation is similar to early
attempts at automated test generation involving
symbolic evaluation [eg. 18]. The computational
difficulties in these approaches limited their
general acceptance. The examples we have been
working with are typical interactive database
oriented applications in which feasibility
conditions usually determine whether or not
certain data would exist in a data base after a
short sequence of simple data base operations.
For this important class of applications, we
found it possible to devise effective feasibility
checks.
 As in the case of BETUnit, test patterns
have been found that document ways of applying
a BET framework approach. SuperFIT patterns
suggest approaches to model construction, such
as the FeasibilityGuardAndStateCheck pattern
described below. Other patterns describe ways
of solving specific problems in the testing
process, such as how to perform feasibility
checks.

2.4 Example
2.4.1 Application description

 We will illustrate FIT and SuperFIT
with a simple Dating System (DS) example. In
the example the user is first presented with a
screen with two choices: Start and Stop. If Stop
is chosen the program terminates. If Start is
chosen a Logon screen is displayed. The user
can enter a name in the textbox and then press
the Enter button. If the name is "William" the
Administrator Screen comes up, on which the
user can choose the Delete or Add button. This
will bring up a screen for entering a name, which
causes a member of the DS to be deleted or
added. In the case of the Delete option, if there
is no member with this name an error screen
comes up, otherwise the member is deleted and a
success message is displayed. In the case of the
Add option, if there is already a member with
that name, an error message is displayed.
Otherwise the member is added and a success
message is returned.
 If the name entered at LogOn is a
member in the system, the member screen is
displayed. There are two options: GetADate and
SetMemberData. If the date option is chosen, a
screen comes up on which the user can choose
entries for several categories. The user can then
push the Enter button and the system looks for a

date. If a date is found, the data for that member
is displayed. Otherwise, a NoDate failure
message is displayed. If the SetMemberData
option is chosen, then a screen comes up that
allows the user to enter his or her data. When
the Enter button is pushed the data is entered in
the data base. Finally, if the name that was
entered at logon is not in the data base then an
Unauthorized User message is displayed.
 The display logic for DS prevents
certain kinds of actions. For example, the
administrator William cannot ask for a date, and
a member of the dating system cannot add or
delete members.
 The DS program is composed of three
subsystem tiers: the GUI, the BusinessLogic, and
the DataBase. In its application to an interactive
system, the usual approach in FIT is not to
exercise the system through the GUI, but to
directly call methods in the lower level tiers. In
this case, we would test the system by making
direct calls on methods in the BusinessLogic
interface. In a sense, the test fixtures in FIT
simulate the GUI by calling lower tier methods
when certain actions are assumed to have been
carried out through the GUI.
 Table 1 contains a sample test in which
the user logs on, is found to be an administrator,
and then unsuccessfully tries to delete someone
named Fred. The first step (start) causes the
creation of an instance of the test fixture DSTest.
The "press start" step results in the state in which
the user can enter a name and log on, which is
simulated by the following two steps in the table.
Following this, there is a check to see if the
system is in the expected Admin options state S.
This is accomplished by the getUserType()
method in the DSTest fixture. getUserType()
calls the appropriate method(s) in the DS
BusinessLogic subsystem. When in the state S,
the user can enter a name and choose the delete
option, simulated by the next two steps. This

Table 1. Sample FIT test table for deleting a
member

start DSTest
press start
enter name William
press login
check getUserType Admin
enter name Fred
press deleteMember
check latestResult Unsuccess
press end

action should result in a message telling the user
that the delete was not successful. In the
associated fixture, this corresponds to the "check
latestResult" step, which should return
Unsuccess. Finally, the "press end" step shuts
down the DS application.

2.4.2 SuperFIT table generator model

 Figure 1 contains part of the SuperFIT
model for the Dating System example,
represented as a directed graph. Feasibility
confirmation steps are represented as state chart
transition conditions, enclosed in square
brackets. For simplification, the Generate
keyword has been omitted from SuperFIT steps
in which FIT table steps are generated. All FIT
enter steps correspond to output that would be
produced from corresponding superFIT Generate
steps. enter step argument(s) may be simple
values, or domain generators which produce
finite sets of possible inputs to that FIT step.
The graph in Figure 1 represents the initial part
of the model where someone logs on. Name is a
domain generator that generates a small set of
possible input names. The model specifies
Feasibility steps to control choices of paths and
generates FIT check steps that will confirm that
the state of the system is what it is expected to
be. The entire model for the DS example
consists of 4 graphs similar in size and structure
to the model in Figure 1.
 Path pattern recognition was used to
implement feasibility steps. It was implemented
using the following methods, which operate on a
partial path up to an embedded Feasilility step
that:
IsLatestLoginAuth(), IsLatestLoginAdmin(),
GetLatestLogin(), IsLatestEnteredNameInDB(),
GetLastEnteredName(),
HasRequiredProperties(), GetMemberData(),
IsAnyMemberWithRequiredProperties().

The functionality of the methods is described by
their names. For example, GetLatestLogin()
returns the name of the person that was last
logged in. This is done by looking backwards
along the path to find the last press step for the
�login� button. If it is found, then we go back
one step more to get the name of the person. If
none is found, then no one has logged in yet, so
the method returns an empty string.
 In our prototype we implemented the
above methods directly. This would be onerous

if similar methods had to be reconstructed for
every new application model. Underlying
application-independent methods can be
developed to facilitate the construction of
application-dependent feasibility checkers. For
example, the first two methods could be
implemented using a generic SuperFIT path
pattern recognizer isLastEntered(s), with the
obvious interpretation. More complex generic
methods might allow the use of path index
variables so that one method could be used to
identify the path position of a pattern, which is
then handed to another pattern recognition
routine that starts from that position.

2.4.3 Sample defects

 When the sample DS program was
originally constructed, a number of defects
occurred. Several elusive defects that made it
past traditional testing efforts were detected by
SuperFIT. For example, if there is an attempt to
delete a nonexistent member before an existing
member is deleted, then the system will fail.
However, deleting a nonexistent member after
having already deleting an existing member
(which may or may not be the member that the
user tries to delete later) does not result in a
failure. This is exactly the kind of elusive bug
for which SuperFIT works well.
 Another elusive defect failure occurs if
a member is added to the DS data base by the
administrator during a session, and the
administrator terminates the system session
before that member logs on and sets their data.
When the system is restarted, it fails. This is
again a particular combination that may not be
tested using traditional methods. Multi-session
paths were made possible in the testing of DS by
including a program-start step. The program
terminate step corresponds to choosing the End
option on the Start/Enter screen.
 We ran the SuperFIT automated testing
system with different path lengths and with
domain generators designed to return small sets
of data for the input to FIT enter Steps. Table 2
describes two of the BET tests that were run.
For each test we give the test size control
parameters, such as path length and number of
alternative inputs to enter Steps. There were five
enter steps, for gender, name, occupation,
religion and email address. In the first test, for
example, the domain generator for religion was
constructed to return five alternatives. Paths will
be traversed for each of the combinations of

Init

End Start

StartEnd

Enter Name

Press Login

[Not[IsLatestLoggedInAdmin]]

[[IsLatestLoggedInAdmin]]

Init

IsLatestLoggedInAuth

Not(IsLatestLoggedInAuth)

Admin

Check UserTypeAdmin

State1

Check UserTypeUnauth

Member

Check UserTypeMem

Figure 1: SuperFit Test Generation Model

of inputs that can occur along the path. The table
also shows the number of tests that were
generated for each setting.
 All of the known elusive bugs in the DS
were detected during the execution of the FIT
tables generated by SuperFIT. The "delete non-
existent member" bug, for example, was detected
by the test described in Table 1. When this table
is run by FIT we get a test report in which it is
noted that instead of getting the expected
"Unsuccess" message to the last check step, an
"error" message is generated that corresponds to
an application program failure.
 DS is a database oriented system.. Two
possible approaches to testing such systems are:
i) have tests that specify the initial setting of the
data base before the user action steps begin, or ii)
assume that the data base is always in the same
initial condition. The second facilitates test
repeatability. For example, when the SuperFIT
tester specifies Feasibility statements, they will
be accurate relative to an assumed data base
initialization. We assumed that the data base
would always be initially empty. This seems the
simplest approach, and it also had the following
advantage: it is difficult to predict in advance
what initial combinations of data will be good
for the detection of elusive bugs. If we start with
an empty data base, then we will by default get

all BET-oriented initial settings by traversing
path prefixes that enter those combinations.

2.4.4 SuperFIT test patterns

 Abstract test generation models may
have states S with one or more outgoing
transitions that in real life can only actually
occur for particular concrete instances of S.
Consequently, as in the above DS example, it is
necessary to put Feasibility guard conditions on
the transitions to avoid the generation of invalid
test scripts, leading to script failures. Suppose
that a state S is followed by a transition having a
user action A, leading to a state S'. Suppose that
A can lead to different antecedent states,
depending on which concrete instantiation of S
has occurred during program execution. This
can be represented in the model using transition
guards. Suppose S' is an antecedent state,
associated with a guard condition G on the
transition for A. Typically, S' will often be
closely associated with G. This leads to a natural
FIT check step at S' which will validate that the
state S' that the test constructer expects to occur
when A is traversed with guard G is the actual
state that is reached during program execution.

Table 2. Statistics for sample DS SuperFIT Tests

Max path
length

20

Domain
generator
bounds

#Gender =2 #Name= 5 #Occup. =5 #Religion =5 #eaddr =5

Num of Tests 2372

Max path
length

40

Domain
generator
bounds

#Gender =2 #Name =2 #Occup. =2 #Religion= 2 #eaddr= 2

Num of Tests 7371

 In the example of Figure 1, when the
system is in abstract state "Start", and
EnterName/Press Logon is performed, if guards
Not[IsLatestLogInAdmin] and
[IsLatestLogInAuth] hold, then there is a
transition to the "Member" state in which various
member actions can be performed (i.e. can be
generated in the FIT table being constructed). To
confirm at run time, that the system really is in
the Member state before performing an action
that assumes this, a "check UserTypeMem"
validation step can be generated for insertion in
the FIT table under construction.
 This situation occurs often enough that
it is useful to characterize it as a SuperFIT test
pattern, to assist future testers in building test
generation models. Similarly, in the above
example, we illustrated the use of "path pattern
feasibility checking" in constructing SuperFIT
feasibility checkers, another useful SuperFIT
testing pattern.

3. Summary and conclusions

 The framework approach was found to
have the advantages of object orientation:
reusable, expandable, and easy to integrate with
other features such as generic domain generators.
The SuperFIT project was directed at interactive
systems. We extended the FIT approach,
resulting in a tool that can be used to generate
FIT tables. As in the earlier, BETUnit class-
oriented research [24], the focus was on elusive
bugs and the use of bounded exhaustive
combinations for their detection.
 Our approach in SuperFIT uses ideas
from model-based testing, where tests are
generated by traversing model paths. The
targeted application domain, interactive

programs based on data bases, allows the use of
simple guards in abstract models to prevent the
traversal of infeasible paths.
 In SuperFIT we used abstract models
with transition conditions because one of the
basic ideas in the FIT strategy is to use test
specifications that are constructible by non-
programming testers and other stakeholders.
 In previous work [14], we attempted to
use the patterns concept for a catalog oriented
approach to elusive bugs. Particular kinds of
defects were specified using associated defect
revealing test patterns. This proved to have
limits, of which one was the "hindsight factor":
we only add patterns after a defect is discovered.
This may not help us with kinds of defects yet to
be seen. The promise of BET is to finesse this
limitation. Previously unknown defect test
patterns "arise" anonymously and are invoked
during the BET test generation and execution
process.
 We found the pattern approach to be an
effective strategy for formulating test generation
descriptions and in this work we applied it to
BET oriented system testing. Several useful
BET test patterns were developed during the
SuperFIT project, including
PathPatternFeasibilityCheckers and
FeasibilityGuardAndStateCheck. In the first of
these, when the SuperFIT test generator
encounters a transition condition it computes the
condition truth value from the pattern of steps
that occurs on the earlier part of the path. The
second pattern concerns a strategy for SuperFIT
model construction in which transition arcs that
contain Feasibility guards are followed by
SuperFit steps that generate corresponding FIT
check steps. The check step validates, during test
execution, that the state which has been reached
in the test is consistent with the SuperFIT

Feasibility guard condition that led to its
occurrence.
 Future work includes continued
application of SuperFIT to interactive, data-
based systems, and BET testing patterns
development.

4. Acknowledgements

The authors would like to thank H.
Hamedtoolloei and I. Sadeghi who helped to
build the SuperFit system.

5. References

[1] White, L J., Cohen, E.I., AND Zeil, S.J., A
Domain Strategy for Computer Program Testing, in
Computer Program Testing, B. Chandrasekaran and S.
Radicchi, Eds., North-Holland, Amsterdam, 1981.
 [2] Richardson, D.J., Clarke, L. A Partition Analysis
Method to Increase Program Reliability, Proceedings
ICSE 5, IEEE, 1981.
[3] Myers, G., The Art of Software Testing, Wiley
Interscience, 1979.
[4] Ostrand, T.J., Balcer, M.J., The Category-Partition
Method for Specifying and Generating Functional
Tests. Commun. ACM, 31-6, 1988.
[5] Hamlet, R. Partition Testing Does not Inspire
Confidence, IEEE TSE, 16- 12, Dec. 1990.
[6] Weyuker, E., Jeng, B., Analyzing Partition Testing
Strategies, IEEE TSE, 17-7, 1991.
[7] Laski, J.E., and Korel, B., A data flow oriented
program testing strategy. IEEE Transactions on
Software Engineering, 9-3, 1983.
[8] Clarke, Lori. A., Podgurski, Andy, Richardson,
Debra J., Zeil, Stephen, J., A comparison of data flow
path selection criteria, Procs. ICSE 8, IEEE, 1985.
[9] Rapps S., Weyuker, E.J., Selecting Software Test
 Data Using Data Flow Information, IEEE TSE, 11-4,
1985.
 [10] Frankl, Phyllis G., Weiss, S.N., An Experimental
Comparison of the Effectiveness of the All-uses and
All-edges Adequacy criteria, Proceedings of the
Symposium on Testing, Analysis, and Verification,
IEEE, 1991.
[11] Marick, B. The Craft of Software Testing,
Prentice Hall, 1995.
[12] Jha,Ajay, Kaner, Cem, " Bugs in the brave new
unwired world." Pacific Northwest Software Quality
Conference, Portland, OR, October 2003.
[13] Binder, R. Testing Object Oriented Systems,
Addison Wesley, 2000.
[14] Howden, W.E., Software Test Selection Patterns
and Elusive Bugs, Proceedings COMPSAC, IEEE,
Edinburgh, 2005.
[15] Howden, W. E., Methodology for the Generation
of Program Test Data, IEEE Computer, 1975.
[16] Clarke, L.A. A System to Generated Test Data
and Symbolically Execute Programs, IEEE TSE, 2,
1976.

[17] King, J.C., Symbolic Execution and Program
Testing, CACM, 19, 1976.
[18] Boyer, R.S., Elsaps, B., Levitt, K.N., SELECT -
A Formal System for Testing and Debugging
Systems by Symbolic Execution, Proceedings 1975
ICRS, IEEE, 1975.
[19] Howden, W.E., Functional Program Testing and
Analysis, McGrawHill, 1987.
[20] Beizer, B. Black-Box Testing, Wiley, 1975.
[21] Boyapati, C., Khurshid, S., Marinov, D. Korat,
Automated Testing Based on Java Predicates,
Proceedings ISSTA, IEEE Press, 2002.
[22] Cheon, Y., Leavens, G., 2002. A Simple and
Practical Approach to Unit Testing: The JML and the
JUnit Way, In ECOOP 2002 -- Object-Oriented
Programming, 16th European Conference, Malaga,
Spain, June 2002, Proceedings. Volume 2374 of
Lecture Notes in Computer Science. Springer-Verlag.
[23] Jackson, D. Schechter, H, Shlyahter, A, Alcoa:
the Alloy Constraint Analyzer, Procs. 22nd ICSE,
IEEE 2000.
[24] Howden, W.E. and Rhyne, C, Test Frameworks
for Elusive Bug Testing, Proceedings ICSOFT,
Barcelona, 2007.
[25] Mugridge, R., and Cunningham, W., FIT for
Developing Software - Framework for Integrated
Tests, Prentice Hall, 2005.
[26] Offutt, J., Liu, S., Abdurazik, A., Amman, P.,
Generating test data from state-based specifications.
Software Testing, Verification and Reliability, 2003,
vol. 13, 25-33.
 [27] Andrews, A.A., Offutt, J., Alexander, R.R.,
Testing Web Applications by Modeling with FSM's,
Software Systems and Modeling, 4(3):326-345, July
2005.
[28] Farchi, E., Harman, A., Pinter, S.S., Using a
model-based test generator to test for standard
conformance. IBM System Journal, Vol. 41, No.1
2002.
[29] Robinson, H., Finite State Model Based Testing
on a Shoestring, STAR West, 1999.

