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Abstract 
 
 Software that has been well tested and analyzed 
may fail unpredictably when a certain 
combination of conditions occurs.  In Bounded 
Exhaustive Testing (BET) all combinations are 
tested on reduced versions of a 
problem/application with the idea that bugs 
associated with combinations for full versions of 
a program may also show up when combinations 
are tested for the reduced version.  In previous 
work, a class oriented JUnit framework 
approach to BET was introduced, along with the 
idea of a BET test pattern.  In this paper we 
considered the application of BET to system 
testing, using an extension of the FIT 
(Framework for Integrated Testing) framework 
called SuperFIT.  This approach is described 
along with a simple example of the application of  
a  SuperFIT test generation  tool.  
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1. Elusive bugs, partition testing and 
BET 
 
 The characteristic feature of an elusive 
bug is that it is caused by a combination of 
conditions that are not reflected in functional 
specifications.  Elusive bugs are not reliably 
detected using single-property partition testing 
rules such as "test each functional input 
partition", "test each partition boundary". Even 
sophisticated boundary analysis approaches may 
miss the relevant test [1]. In [5], Hamlet 
described a formal basis for analyzing the 
limitations of partition testing [5]. Relevant 
analysis is also described by Weyuker and Jeng 
in [6]. 
 Partition testing was extended using 
approaches that try to identify "meaningful" 
combinations.  In [2], Richardson combined 
specification conditions with implementation 
conditions.  Other work introduced the use of 

cause-effect graphs, which identify functionally 
relevant combinations from specifications [3].  
Ostrand provided a language and test generation 
tool that facilitated the generation of 
combinational tests that were implicitly defined 
in a test specification [4]. 
 The combination problem has also been 
attacked using combinationally  oriented 
program coverage measures, such as data flow 
testing, in which pairs or groups of statements 
that have a data flow relationship must be tested 
together on at least one test  [e.g. 7-9].  
Unfortunately, data flow testing has not been 
reported as being markedly more effective than 
ordinary branch and coverage testing [10].   
Also, we have the following problem: if the 
defect in the code is the omission of a condition 
that is part of the combination that causes the 
problem, then the required test will not be 
produced. 
 Defect-catalog approaches to test 
selection attempt to categorize and list classes of 
potential bugs in particular application areas.   
They may also include associated test 
specifications. The catalog approach was 
systematically described by Marick in [11].  
More recent work, aimed at specific application 
areas, can be found in publications such as [12].  
In [13] Binder gave an in-depth description of a 
pattern-oriented approach to the description of 
testing methodology.  In [14] Howden 
investigated a pattern-oriented cataloging 
approach that was specifically aimed at 
combinational tests for the detection of elusive 
bugs.  Although this pattern-based approach was 
found to be useful, there were difficulties.  It was 
not easy to classify defects into meaningful 
classes and to create a hierarchy that made them 
easily retrievable. More importantly, the 
approach involves constructing descriptions of 
defect revealing tests after such defects occur, 
when what we really want is to have patterns for 
those defects that have not yet occurred.  To 
some extent, this is avoided by generalizing to 
classes of defects, but elusive bugs often 
correspond to some new application specific 
peculiarity. 



  

 An alternative approach is to try testing 
"all combinations" in a limited version of an 
application, with the hope that failures that are 
caused by combinations in a full version are also 
caused by combinations in the limited version.   
This idea was present in an early form in the 
work on path-oriented testing methods.  
Symbolic evaluation testing methods, for 
example, examined all paths up to some number 
of loop iterations, with the idea that bugs would 
show up on limited versions of the application 
that only required small numbers of loop 
iterations. [e.g. 15-19].  This idea of testing 
limited versions of an application that 
correspond to some small number of iterations of 
a loop is a well known method [20]. 
 In more recent research, data-oriented 
instantiations of the limited problem approach 
are referred to as BET (Bounded Exhaustive 
Testing).  The assumption that bugs which show 
up in larger versions of a problem will also show 
up in some smaller version has come to be called 
"the bounded testing hypothesis" [23].  In its 
modern form, BET differs from the path-oriented 
work in that it involves direct generation of test 
data combinations, rather than indirect 
generation from a set of control paths.  
Automated test generation was found to be 
difficult in the path oriented approach. 
 References [21, 22] describe modern 
BET approaches.  Both include class testing 
tools.  They work directly with application class 
descriptions to produce all instances of data and 
class structures up to some size, which are then 
used to automatically test instances of an 
application class.   
 The work that is described here follows 
the BET approach to the detection of elusive 
bugs.  It differs from earlier BET work in that it 
is framework based.    The initial work on BET 
frameworks, described in [24], was class 
oriented, and produced an extension to JUnit 
called BETUnit.  Frameworks based on JUnit 3.8 
and 4.1 were developed.   Both allow the 
definition of combinational test cases and test 
suites that can be automatically run using an 
associated test runner. 
 The advantages of the framework 
approach include the easy incorporation of 
alternative "domain generator" plug-ins that 
allow a tester to use different combinational 
strategies for test generation.  This differs from 
the approach used in the Korat tool [20], for 
example, which contain fixed, built-in 
combinational mechanisms, which may not 
directed enough when the goal is to test over 

particular kinds of promising combinations.    
Simple domain generators return the elements of 
a simple finite sequence, one at a time.  More 
complex generators can be built from simple or 
other complex generators and may return 
structures or combinations.  Combinational 
generators include "all-permutations", "all 
stratified permutations", and "all-pairs".  The 
framework approach is also convenient to use 
because of its reliance on test fixtures.  By 
fixtures, we mean code that maps a test 
specification onto program execution.  This 
"delinking" of test descriptions and application 
execution facilitates the use of new 
implementations of the same test, or 
alternatively, reuse of application dependent test 
code in new tests.   
 In both the earlier and the current work, 
a pattern-oriented approach was adopted.  The 
tester identifies testing situations in which BET 
testing may be useful and then constructs test 
cases with a BET component.  These are 
constructed within the relevant framework, using 
automated test generation and execution.  Test 
patterns guide the tester in performing required 
test construction tasks, and suggest alternative 
kinds of strategies.  In our research on JUnit 
BET we found that test patterns may contain 
both a test generation and an associated test 
oracle component.   Certain kinds of test 
generators go with certain kinds of oracles.  For 
example, BETUnit test generators were used that 
generate abstract metadata along with tests.  The 
metadata can be used to construct an abstract, 
partial program simulator that acts as an oracle.  
Several kinds of such patterns were identified in 
the BETUnit research. 
 Our previous BET work focuses on 
class oriented automated testing.  The work in 
this paper describes the application of the 
framework strategy to systems testing, and is 
based on the FIT framework. 
 
2. SuperFit 
2.1 Introduction 
 
 In an interactive application the 
program starts in a particular state and then goes 
through a sequence of intermediate states as a 
sequence of user steps is performed.  We 
normally try to test each state, or even all 
possible pairs of states, but it is usually not 
possible to test all possible sequences of states.  
Elusive bugs have been observed which occur 
when steps are performed in particular 



  

sequences.  SuperFIT is a framework for 
automatically generating and testing all possible 
sequences up to some predetermined length.   
Our approach to the specification of test step 
sequences, and hence the basis for SuperFIT, is 
the FIT testing framework [25].  
 
2.2 Review of FIT (Framework for 
Integrated Testing) 
 
 FIT belongs to the general class of 
table-driven testing methods.  Tables specify 
sequences of steps.  The steps are meant to be 
application dependent but independent of test 
code.  A major idea in the approach is that tables 
can be constructed and understood by non-
programmers.  Each step has to be mapped on to 
the application under test.    
 In FIT there are several kinds of tables, 
but we will only consider action tables here.  
Each FIT action table is associated with an 
action table fixture.  The fixture has methods 
whose names correspond to the steps in the table.  
A table test runner executes the steps in a test by 
calling the methods in the associated fixture. 
 FIT action tables have four kinds of 
steps: start, press, enter and check.  Each step in 
the table starts with one of the four action 
keywords.  This is followed by the name of the 
associated fixture method, and then any 
appropriate parameters.   
 A start step is followed by the name of 
the fixture class to be used for the table.  An 
enter step is followed by the name of a method, 
and then a list of the input parameters for that 
method.  A press step has a method name, but no 
parameters.  A check step names a method that 
returns a value that is compared with the 
parameter in the step.  It functions as an 
assertion, or test oracle, that confirms the validity 
of computed intermediate and final values. 
 
2.3 Basic structure of SuperFIT 
 
 The core of the SuperFIT approach is 
the test generation model and model traverser.  
The model is a directed graph, similar to those 
used in model-based testing [eg. 26-29].  Tests 
are generated by traversing the graph.  SuperFIT 
models differ in that they incorporate test 
fixtures, and are test generation models rather 
than specifications.  The SuperFIT test generator 
traverses paths in the model graph, using a 
depth-first strategy, up to some predetermined 

path length.  For each path, it generates a FIT 
test table. 
 SuperFIT model edges can be labeled 
with three kinds of steps: Start, Feasibility and 
Generate.  As in FIT, the Start step identifies a 
test fixture to be used for interpreting the other 
steps in the model.  Also, as in FIT, the other 
steps identify methods in the test fixture.  If an 
identified method has parameters, values for 
these will appear in the associated SuperFIT 
step.   
 Feasibility steps identify a method that 
is used to see if the current transition is 
"feasible" in the context of the traversed subpath 
which has led to that transition.  This is 
necessary because SuperFIT models can be 
abstract in the sense that, depending on the 
context leading to a step, a next step may or may 
not be possible in the actual system.  If a 
Feasibility step returns F, then the associated 
transition is not followed and the test generator 
backs up the last branch point at which there is 
an unfollowed transition. 
 SuperFIT fixture methods associated 
with Generate steps construct FIT table steps.  In 
many cases, a Generate step will simply copy an 
identified FIT step.  Some FIT steps, such as 
enter steps have input parameters.  SuperFIT 
Generate steps can identify either simple input 
parameters, or domain generators that can be 
used to generate a finite set of possible 
alternatives. Suppose, for example, that a domain 
generator g() is identified in a Generate step for a 
FIT enter step. The SuperFIT model traverser 
will generate instances of the enter step for each 
of the elements returned by g().  When the 
SuperFIT graph traverser is in backup mode, 
backing up to a previously unexplored 
alternative, it will initiate a new path for either 
an unfollowed graph transition, or an unused 
domain generator alternative. 
 Additional, more sophisticated model 
features are also possible.  For example, model 
transitions having both a Feasibility and a 
Generator step may specify a Generate fixture 
method that depends on data returned by the 
Feasibility method. 
 Feasibility steps are similar to guard 
conditions in state models.  In some examples of 
model-based testing, all model paths are feasible 
[e.g. 32] so that feasibility is not an issue.  In 
others, embedded directives avoid the generation 
of infeasible paths [e.g. 30].  Others construct a 
set of constraints from path conditions whose 
solution corresponds to a test that causes that 
path to be followed [e.g. 29].  In this last case, 



  

infeasibility corresponds to constraint sets with 
no solution.  The constraint set approach to 
model-based test generation is similar to early 
attempts at automated test generation involving 
symbolic evaluation [eg. 18]. The computational 
difficulties in these approaches limited their 
general acceptance.  The examples we have been 
working with are typical interactive database 
oriented applications in which feasibility 
conditions usually determine whether or not 
certain data would exist in a data base after a 
short sequence of simple data base operations.  
For this important class of applications, we 
found it possible to devise effective feasibility 
checks. 
 As in the case of BETUnit, test patterns 
have been found that document ways of applying 
a BET framework approach.  SuperFIT patterns 
suggest approaches to model construction, such 
as the FeasibilityGuardAndStateCheck pattern 
described below.  Other patterns describe ways 
of solving specific problems in the testing 
process, such as how to perform feasibility 
checks.   
 
2.4 Example  
2.4.1 Application description 
 
 We will illustrate FIT and SuperFIT 
with a simple Dating System (DS) example.  In 
the example the user is first presented with a 
screen with two choices: Start and Stop.  If Stop 
is chosen the program terminates.  If Start is 
chosen a Logon screen is displayed.  The user 
can enter a name in the textbox and then press 
the Enter button.  If the name is "William" the 
Administrator Screen comes up, on which the 
user can choose the Delete or Add button.  This 
will bring up a screen for entering a name, which 
causes a member of the DS to be deleted or 
added.  In the case of the Delete option, if there 
is no member with this name an error screen 
comes up, otherwise the member is deleted and a 
success message is displayed.  In the case of the 
Add option, if there is already a member with 
that name, an error message is displayed.  
Otherwise the member is added and a success 
message is returned. 
 If the name entered at LogOn is a 
member in the system, the member screen is 
displayed.  There are two options: GetADate and 
SetMemberData.  If the date option is chosen, a 
screen comes up on which the user can choose 
entries for several categories.  The user can then 
push the Enter button and the system looks for a 

date.  If a date is found, the data for that member 
is displayed.    Otherwise, a NoDate failure 
message is displayed.  If the SetMemberData 
option is chosen, then a screen comes up that 
allows the user to enter his or her data.  When 
the Enter button is pushed the data is entered in 
the data base.  Finally, if the name that was 
entered at logon is not in the data base then an 
Unauthorized User message is displayed. 
 The display logic for DS prevents 
certain kinds of actions.  For example, the 
administrator William cannot ask for a date, and 
a member of the dating system cannot add or 
delete members. 
 The DS program is composed of three 
subsystem tiers: the GUI, the BusinessLogic, and 
the DataBase.  In its application to an interactive 
system, the usual approach in FIT is not to 
exercise the system through the GUI, but to 
directly call methods in the lower level tiers.  In 
this case, we would test the system by making 
direct calls on methods in the BusinessLogic 
interface.  In a sense, the test fixtures in FIT 
simulate the GUI by calling lower tier methods 
when certain actions are assumed to have been 
carried out through the GUI. 
 Table 1 contains a sample test in which 
the user logs on, is found to be an administrator, 
and then unsuccessfully tries to delete someone 
named Fred. The first step (start) causes the 
creation of an instance of the test fixture DSTest.  
The "press start" step results in the state in which 
the user can enter a name and log on, which is 
simulated by the following two steps in the table.  
Following this, there is a check to see if the 
system is in the expected Admin options state S. 
This is accomplished by the getUserType() 
method in the DSTest fixture. getUserType() 
calls the appropriate method(s) in the DS 
BusinessLogic subsystem.  When in the state S, 
the user can enter a name and choose the delete 
option, simulated by the next two steps.  This  
 
Table 1. Sample FIT test table for deleting a 
member 
 
start DSTest  
press start  
enter name William 
press login  
check getUserType Admin 
enter name Fred 
press deleteMember  
check latestResult Unsuccess 
press end  



  

 
action should result in a message telling the user 
that the delete was not successful.  In the 
associated fixture, this corresponds to the "check 
latestResult" step, which should return 
Unsuccess.  Finally, the "press end" step shuts 
down the DS application. 
 
2.4.2 SuperFIT table generator model 
 
 Figure 1 contains part of the SuperFIT 
model for the Dating System example, 
represented as a directed graph.   Feasibility 
confirmation steps are represented as state chart 
transition conditions, enclosed in square 
brackets. For simplification, the Generate 
keyword has been omitted from SuperFIT steps 
in which FIT table steps are generated.  All FIT 
enter steps correspond to output that would be 
produced from corresponding superFIT Generate 
steps.  enter step argument(s) may be simple 
values, or domain generators which produce 
finite sets of possible inputs to that FIT step.  
The graph in Figure 1 represents the initial part 
of the model where someone logs on. Name is a 
domain generator that generates a small set of 
possible input names. The model specifies 
Feasibility steps to control choices of paths and 
generates FIT check steps that will confirm that 
the state of the system is what it is expected to 
be.  The entire model for the DS example 
consists of 4 graphs similar in size and structure 
to the model in Figure 1. 
 Path pattern recognition was used to 
implement feasibility steps.  It was implemented 
using the following methods, which operate on a 
partial path up to an embedded Feasilility step 
that: 
IsLatestLoginAuth(), IsLatestLoginAdmin(), 
GetLatestLogin(), IsLatestEnteredNameInDB(), 
GetLastEnteredName(), 
HasRequiredProperties(),  GetMemberData(), 
IsAnyMemberWithRequiredProperties().   
 
The functionality of the methods is described by 
their names.  For example, GetLatestLogin() 
returns the name of the person that was last 
logged in. This is done by looking backwards 
along the path to find the last press step for the 
�login� button. If it is found, then we go back 
one step more to get the name of the person. If 
none is found, then no one has logged in yet, so 
the method  returns an empty string. 
 In our prototype we implemented the 
above methods directly.  This would be onerous 

if similar methods had to be reconstructed for 
every new application model. Underlying 
application-independent methods can be 
developed to facilitate the construction of 
application-dependent feasibility checkers.  For 
example, the first two methods could be 
implemented using a generic SuperFIT path 
pattern recognizer isLastEntered(s), with the 
obvious interpretation. More complex generic 
methods might allow the use of path index 
variables so that one method could be used to 
identify the path position of a pattern, which is 
then handed to another pattern recognition 
routine that starts from that position.    
 
2.4.3 Sample defects 
 
 When the sample DS program was 
originally constructed, a number of defects 
occurred.  Several elusive defects that made it 
past traditional testing efforts were detected by 
SuperFIT.  For example, if there is an attempt to 
delete a nonexistent member before an existing 
member is deleted, then the system will fail.  
However, deleting a nonexistent member after 
having already deleting an existing member 
(which may or may not be the member that the 
user tries to delete later) does not result in a 
failure.  This is exactly the kind of elusive bug 
for which SuperFIT works well. 
 Another elusive defect failure occurs if 
a member is added to the DS data base by the 
administrator during a session, and the 
administrator terminates the system session 
before that member logs on and sets their data.  
When the system is restarted, it fails.  This is 
again a particular combination that may not be 
tested using traditional methods.  Multi-session 
paths were made possible in the testing of DS by 
including a program-start step.  The program 
terminate step corresponds to choosing the End 
option on the Start/Enter screen.  
 We ran the SuperFIT automated testing 
system with different path lengths and with 
domain generators designed to return small sets 
of data for the input to FIT enter Steps.  Table 2 
describes two of the BET tests that were run.  
For each test we give the test size control 
parameters, such as path length and number of 
alternative inputs to enter Steps.  There were five  
enter steps, for gender, name, occupation, 
religion and email address.  In the first test, for 
example, the domain generator for religion was 
constructed to return five alternatives.  Paths will 
be traversed for each of the combinations of 



  

Init

End Start

StartEnd

Enter Name

Press Login

[Not[IsLatestLoggedInAdmin]]

[[IsLatestLoggedInAdmin]]

Init

IsLatestLoggedInAuth

Not(IsLatestLoggedInAuth)

Admin

Check UserTypeAdmin

State1

Check UserTypeUnauth

Member

Check UserTypeMem

Figure 1: SuperFit Test Generation Model 
 

of inputs that can occur along the path. The table 
also shows the number of tests that were 
generated for each setting. 
 All of the known elusive bugs in the DS 
were detected during the execution of the FIT 
tables generated by SuperFIT.  The "delete non-
existent member" bug, for example, was detected 
by the test described in Table 1.  When this table 
is run by FIT we get a test report in which it is 
noted that instead of getting the expected 
"Unsuccess" message to the last check step, an 
"error" message is generated that corresponds to 
an application program failure. 
 DS is a database oriented system..  Two 
possible approaches to testing such systems are: 
i) have tests that specify the initial setting of the 
data base before the user action steps begin, or ii) 
assume that the data base is always in the same 
initial condition.  The second facilitates test 
repeatability.  For example, when the SuperFIT 
tester specifies Feasibility statements, they will 
be accurate relative to an assumed data base 
initialization.  We assumed that the data base 
would always be initially empty.  This seems the 
simplest approach, and it also had the following 
advantage: it is difficult to predict in advance 
what initial combinations of data will be good 
for the detection of elusive bugs.  If we start with 
an empty data base, then we will by default get 

all BET-oriented initial settings by traversing 
path prefixes that enter those combinations. 
 
2.4.4  SuperFIT test patterns 
 
 Abstract test generation models may 
have states S with one or more outgoing 
transitions that in real life can only actually 
occur for particular concrete instances of S.  
Consequently, as in the above DS example, it is 
necessary to put Feasibility guard conditions on 
the transitions to avoid the generation of invalid 
test scripts, leading to script failures.  Suppose 
that a state S is followed by a transition having a 
user action A, leading to a state S'.   Suppose that 
A can lead to different antecedent states, 
depending on which concrete instantiation of S 
has occurred during program execution.  This 
can be represented in the model using transition 
guards. Suppose S' is an antecedent state, 
associated with a guard condition G on the 
transition for A.  Typically, S' will often be 
closely associated with G. This leads to a natural 
FIT check step at S' which will validate that the 
state S' that the test constructer expects to occur 
when A is traversed with guard G is the actual 
state that is reached during program execution. 
 

 



  

Table 2. Statistics for sample DS SuperFIT Tests 
 

Max path 
length 

20     

Domain 
generator 
bounds 

#Gender =2 #Name= 5 #Occup. =5 #Religion =5 #eaddr  =5 

Num of Tests 2372     
      

Max path 
length 

40     

Domain 
generator 
bounds 

#Gender =2 #Name =2 #Occup. =2 #Religion= 2 #eaddr=  2 

Num of Tests 7371     
 
 In the example of Figure 1, when the 
system is in abstract state "Start", and 
EnterName/Press Logon  is performed,  if guards 
Not[IsLatestLogInAdmin] and 
[IsLatestLogInAuth] hold, then there is a 
transition to the "Member" state in which various 
member actions can be performed (i.e. can be 
generated in the FIT table being constructed). To 
confirm at run time, that the system really is in 
the Member state before performing an action 
that assumes this, a  "check UserTypeMem" 
validation step can be generated for insertion in 
the FIT table under construction. 
 This situation occurs often enough that 
it is useful to characterize it as a SuperFIT test 
pattern, to assist future testers in building test 
generation models.  Similarly, in the above 
example, we illustrated the use of "path pattern 
feasibility checking" in constructing SuperFIT 
feasibility checkers, another useful SuperFIT 
testing pattern.  
 
3. Summary and conclusions 
 
 The framework approach was found to 
have the advantages of object orientation: 
reusable, expandable, and easy to integrate with 
other features such as generic domain generators.  
The SuperFIT project was directed at interactive 
systems.  We extended the FIT approach, 
resulting in a tool that can be used to generate 
FIT tables.  As in the earlier, BETUnit class-
oriented research [24], the focus was on elusive 
bugs and the use of bounded exhaustive 
combinations for their detection.   
 Our approach in SuperFIT uses ideas 
from model-based testing, where tests are 
generated by traversing model paths. The 
targeted application domain, interactive 

programs based on data bases, allows the use of 
simple guards in abstract models to prevent the 
traversal of infeasible paths. 
 In SuperFIT we used abstract models 
with transition conditions because one of the 
basic ideas in the FIT strategy is to use test 
specifications that are constructible by non-
programming testers and other stakeholders. 
 In previous work [14], we attempted to 
use the patterns concept for a catalog oriented 
approach to elusive bugs.  Particular kinds of 
defects were specified using associated defect 
revealing test patterns. This proved to have 
limits, of which one was the "hindsight factor": 
we only add patterns after a defect is discovered.  
This may not help us with kinds of defects yet to 
be seen.  The promise of BET is to finesse this 
limitation. Previously unknown defect test 
patterns "arise" anonymously and are invoked 
during the BET test generation and execution 
process.  
 We found the pattern approach to be an 
effective strategy for formulating test generation 
descriptions and in this work we applied it to 
BET oriented system testing.   Several useful 
BET test patterns were developed during the 
SuperFIT project, including  
PathPatternFeasibilityCheckers and 
FeasibilityGuardAndStateCheck. In the first of 
these, when the SuperFIT test generator 
encounters a transition condition it computes the 
condition truth value from the pattern of steps 
that occurs on the earlier part of the path.   The 
second pattern concerns a strategy for SuperFIT 
model construction in which transition arcs that 
contain Feasibility guards are followed by 
SuperFit steps that generate corresponding FIT 
check steps.  The check step validates, during test 
execution, that the state which has been reached 
in the test is consistent with the SuperFIT 



  

Feasibility guard condition that led to its 
occurrence. 
 Future work includes continued 
application of SuperFIT to interactive, data-
based systems, and BET testing patterns 
development.   
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