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Abstract—Wireless networks based on 802.11a/b/g protocols
have gained wide-spread acceptance in both enterprise as well
as home networks. However, these devices lack native support
for many advanced features such as service differentiation, etc.,
that are required in specific application domains. In this paper,
we propose Covenant, a software based cooperative scheduling
framework to provide a rich set of features for applications that
require nodes to cooperate with each other to satisfy system-wide
objectives. We propose a novel 2 1

2 -stage pipeline architecture
as an efficient mechanism to implement cooperative scheduling
among multiple nodes. We demonstrate how Covenant can be
easily implemented in software, thus requiring absolutely no
hardware or firmware changes to the already widely installed
base of 802.11a/b/g based wireless devices. We also evaluate,
using a real Linux based test-bed with Covenant drivers, the
efficacy of the approach on two different scheduling disciplines:
proportional priority and strict priority. We demonstrate that
these scheduling disciplines are effective in providing service
guarantees to multimedia applications even in the presence of
other competing traffic.

Index Terms—Scheduling, wireless, cooperative, video, QoS.

I. INTRODUCTION

W IRELESS networks are becoming increasingly ubiqui-
tous, in large measure, due to the popularity of the

802.11 based MAC layer protocols. While there are many
protocols in the 802.11 suite and more protocols are constantly
being added, 802.11a, b and g constitute the most popular
among them and hence the de facto standards in commodity
wireless networks. These three protocols provide the same
mechanism for medium access and differ only in the supported
set of transmit rates, and frequency band of operation.

Commodity wireless networks based on 802.11 can be used
in a broad range of scenarios. Given the limited bandwidth
in wireless channels, scheduling is often a key consideration
in many of these scenarios, more so than in wired local
area networks where bandwidth is plenty. For example, in
wireless home networks, providing quality-of-service support
is critical to delivering services like audio on demand, video
on demand, voice over IP and high-speed Internet access
to homes. Throughput guarantees are required by multiple
competing high bandwidth multimedia streams delivered to
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wireless networked consumer electronic devices. There is, of
course, a large body of research in the wireless community
(e.g., [1]–[6]) with protocols and techniques to arbitrate
channel access among competing nodes. However, most of
these solutions suggest modifications to the de facto 802.11
protocol in order to perform the required form of scheduling.
For example, the 802.11e standard offers Quality-of-Service
(QoS) features by allowing higher priority packets to have
lower congestion window as opposed to the lower priority
packets. The downside to this, however, is the fact that existing
installed base of 802.11abg based devices cannot directly be
used in these settings.

While protocols to arbitrate the channel access among
competing wireless nodes can be designed efficiently, it is an
equally challenging problem to provide incentives for nodes to
follow the protocol. Of course, the problem disappears when
we consider a single administrative entity that controls all
the participating nodes. In general, there are many scenarios,
where nodes are required to cooperate among each other
using a global scheduling discipline. For example, in home
networks, media applications and the user’s personal web
browsing and email applications can cooperate in such a way
as to satisfy simultaneously all the applications. In this paper,
we concentrate on such scenarios where we assume that there
is a single administrative domain such as a personal user or an
enterprise. In our previous position paper [7], we outlined a
framework to perform cooperative scheduling, where nodes
cooperate with each other to share the limited bandwidth
efficiently.

In this paper, our main contribution is the design of a
software architecture called Covenant that enables easy imple-
mentation of the cooperative scheduling framework whereby
nodes schedule amongst themselves in a distributed fashion
in order to achieve a global objective. The key features of
Covenant are as follows.

• Software based. Covenant is completely implemented
in software and works with any 802.11 card including
legacy devices to provide new features.

• Pipelined architecture. Covenant uses a novel 2 1
2 -stage

stage pipeline architecture to coordinate among nodes.
• Backward Compatible. In the presence of conforming and

non-conforming nodes, Covenant degrades to the regular
802.11 thus the performance is no worse than 802.11.

We implemented Covenant by modifying an open source
Linux based driver to create a flexible platform for new
scheduling policies. We demonstrate the utility of Covenant
through priority based scheduling policies that are not
otherwise possible using off-the-shelf 802.11abg protocols.
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Scheduling in wireless networks using global knowledge is
a rich area of research both in single-hop as well as multi-hop
scenarios; the novelty of Covenant is not in the scheduling
algorithms per se, but in the ability to achieve global schedul-
ing objectives in a decentralized fashion without requiring any
firmware changes.

The rest of the paper is organized as follows. In Section II,
we present the architecture of Covenant including the 2 1

2 -
stage pipeline architecture briefly. We then, present controlled
experiments to study the feasibility of Covenant in Section III.
In Section IV, we present evaluation results of scheduling
disciplines we have implemented using Covenant. Finally,
we discuss related work in Section VI and conclusions in
Section VII.

II. ARCHITECTURE OF COVENANT

In this section, we describe the design and architecture of
Covenant. We also discuss the pipelined implementation of our
design and implementation details on 802.11-based wireless
networks. The main assumption in our system design is that
nodes are willing to cooperate amongst themselves. We believe
this is a reasonable assumption in many scenarios where
the nodes are controlled by a single authority. For example,
in home wireless networks, the owner controls the wireless
nodes that are competing for the same channel (e.g., wireless
speakers, laptop nodes). In provider wireless networks, the
service providers may potentially control the software on
the wireless nodes, in which case nodes can be made to
cooperate with each other. In such scenarios, the goal of our
system is to provide a way to arbitrate channel access among
competing nodes in such a way that some global performance
objective could be satisfied. An example of such objective
in a home network scenario is that, wireless speakers get
all the bandwidth they need to sustain while the laptop node
obtains whatever remaining bandwidth unused by the wireless
speakers.

A. Design

The basic design of Covenant involves three stages:
• Estimation. Each node independently and periodically

identifies its own medium access requirements.
• Load exchange. This local knowledge is then propagated

to every other node so that each node obtains knowledge
of the global demand on the channel.

• Scheduling. Finally, in this stage, each node indepen-
dently computes a schedule based on this global demand
and transmits packets accordingly.

In Covenant, each of the three above stages operates in a
pipelined fashion (as shown in Figure 1) across all the nodes.
Therefore, in every time interval each node directly controls
what packets to send in that particular interval based on the
global demands on the channel. The pipeline design is critical
since it ensures that the scheduler itself is work-conserving
and does not remain idle unless the node has no packets to
send as can be seen from the figure where the scheduling
phase of the cycle 2 immediately follows the one in cycle
1. In the Figure 1, we also show how two nodes interact in
our Covenant architecture (note that APs can also be nodes

in our architecture) using packet timelines. In parallel, both
node 1 and 2 can observe the set of packets that need to
be transmitted in the next round of scheduling. They then
exchange the information using load exchange packets that
allows them to compute how many packets they would like to
transmit during that round of scheduling. The scheduling phase
will then use DCF to transmit the exact number of packets
from nodes 1 and 2 to transmit the packets.

The estimation stage in each node allows the to understand
what the traffic demands are for a given round of scheduling.
The stage itself is implemented through explicit buffering
in the MAC layer; thus our design requires no special API
between the MAC layer and the applications. Applications
running on the node typically generate packets that pass
through the MAC layer (in the device driver corresponding to
the wireless card) where the packets are intercepted and stored
in a small buffer. The number of packets collected in a small
interval of time gives an estimate of the traffic requirements
for that particular node. Thus, applications themselves do not
need to explicitly state what their requirements are and can
operate without modification.

At the end of the estimation stage, the node knows how
many packets it needs to send within the scheduling round.
This estimate of the node’s demand is then communicated in
the load exchange stage explicitly by injecting a “broadcast”
packet (called the load exchange packet) into the transmit path.
This broadcast packet consists of information about the state
on that particular node including details about queue occu-
pancy, transmission rate and other such parameters, depending
on the particular scheduling discipline. This information, in
some cases, can be obtained by observing the transmissions
themselves so that explicit communication is not required. For
example, in [8], the authors propose a distributed mechanism
where the load can be deciphered from the rate of packet
transmissions on the medium if every node follows the same
protocol. However, for many other parameters of interest, there
might be no implicit mechanism to convey the information and
one would have to depend on explicit messages to transmit this
information.

Finally, in the scheduling stage, each node computes a
schedule based on a globally consistent scheduling policy
using the knowledge obtained through the load exchange
packets. Using this scheduling policy, the nodes determine
whether to transmit the packets or to hold them back until
it is their turn to transmit the packets. It is in this stage that
conformance to the protocol is important, as malicious or non-
conformant nodes that do not follow the protocol can hurt
the overall system objectives. However, in the cooperative
scheduling framework, we can expect all the nodes to be
conformant to the protocol. The scheduling policy itself is
scenario-dependent; in Section IV, we will describe a case
study of a real deployment of Covenant including the partic-
ular scheduling policies that we used in that scenario.

It is important to realize that the system relies on accurate
sharing of load information to arrive at a global scheduling
policy. Clearly, this is not feasible on a per-packet basis (or
micro-scheduling), as the control channel overhead would be
too high. Thus, Covenant performs macro-scheduling at the
granularity of intervals (equal to the pipeline stages). Thus,
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2 -stage pipeline architecture. Each pipeline stage is equal in duration, but estimation stage and load exchange stage for a given cycle overlap with

each other.

each node determines what set of packets to transmit in a given
interval and schedules these packets for transmission. How-
ever, individual packets across nodes contend using regular
802.11 DCF for channel access while the number of packets
and the type of packets scheduled are dictated by the global
scheduling discipline.

B. Pipeline

We now discuss the pipeline implementation in more detail.
As shown in Figure 1, each of the stages in the pipeline
is for one epoch and they all have the same epoch time
period. While all pipeline stages are typically non-overlapping,
the load estimation and load exchange stages overlap par-
tially because of the following reason. The load exchange
packets are transmitted immediately after the load estimation
stage. Ideally, each node should receive the load exchange
packets from other nodes exactly after their corresponding
load estimation stage or slightly later if we factor in the
channel propagation delays. However, due to inexact time
synchronization of the pipelines of transmitting and receiving
nodes, load exchange packets can potentially arrive earlier
than the expiry of the corresponding load estimation stage
of the receiver. To accommodate this, we designed the load
exchange stage to overlap in part with the load estimation
stage, so that any load exchange packet received slightly
earlier than the expiry of the load estimation stage would still
be considered. This overlap, however, contributes only a half
stage to the overall latency of the pipeline; hence the name
2 1

2 -stage pipeline.
Note that all stages, particularly the estimation and schedul-

ing stages are of equal sizes. This is important since we
want the pipeline to be such that the same stage in two
different cycles should have no overlap and also that the
scheduling stage is work-conserving (i.e., there should exist
no gap between two scheduling stages in consecutive cycles).
Both these conditions are met by allocating equal time periods
to all the stages in the pipeline.

Earlier, we mentioned that we implement load estimation
stage in Covenant through active buffering of packets that
arrive during this stage. This gives an accurate estimate of

the number of packets that need to be scheduled during
the scheduling stage of a given cycle. Buffering however,
increases the latency experienced by individual packets as
packets wait in the buffer awaiting their turn to be transmitted
on the wireless medium. This increase in the latency can
potentially affect both TCP and UDP traffic. We note that the
maximum delay experienced by a packet that arrives at the
beginning of the estimation stage is 1 1

2 epoch and given con-
stant arrival rate, the average delay would be one epoch. This
effect can be alleviated by using passive estimation techniques
that avoid buffering such as exponentially weighted moving
average (EWMA). In such a mechanism, packets are no longer
buffered. If the EWMA prediction is right, then the expected
set of packets directly arrive in the scheduling stage and are
scheduled. Of course, buffering some packets might still be
required if the appropriate scheduling discipline grants lesser
bandwidth than the requirement of the node. The downside to
this approach is that it may lead to inaccurate representation
of system load if the traffic is not easily predictable. These
issues are analyzed in detail in Section III.

Next important stage is the load exchange stage. In this
stage, local knowledge is exchanged via explicit messages
among participating nodes to obtain global knowledge. In
order to obtain accurate global knowledge, the load exchange
packets from all participating nodes have to be received during
this stage. Time synchronization therefore, plays a crucial
role in the accuracy of this stage. We solve this problem by
borrowing from 802.11 design which faces a similar problem
of synchronization for DCF. This is achieved by using the
beacon packets which are generated by the access points
periodically. Lack of external clocks like access points can
be made up by using the load exchange packets from one of
the participating nodes to synchronize similar to [9].

Finally, in the scheduling stage, packets are scheduled
according to the global knowledge obtained via explicit load
exchange messages and a pre-configured globally consistent
scheduling policy. In this stage, there could be packets that
could not get transmitted either because the channel capacity
decreased or due to other reasons. Packets that are not suc-
cessfully transmitted in the scheduling stage are re-factored in
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existing 802.11 based wireless cards.

the next cycle.
The main benefits of this design are efficiency and ro-

bustness. Since we implement the mechanism in a pipeline,
for every estimation and load exchange state there is an
overlapping scheduling stage transmitting packets. The node
is never in an estimation stage without simultaneously sending
any packets, except of course, when the pipeline begins. Ro-
bustness is achieved due to the predominantly stateless nature
of the pipeline. Each cycle operates with fresh dissemination
of individual load estimates and global knowledge computed
through these messages. Since the amount of persistent state
in each of the nodes is minimal, it prevents inaccuracies
from building up over time. Thus, the design is tolerant to
occasional loss in load exchange messages or other control
packets.

C. Implementation

Architecturally, Covenant is implemented as an extension
within the 802.11 MAC layer [7] as shown in Figure 2.
The packet transmit and receive calls from the upper layers
to the MAC layer pass through the 802.11 extension layer
where appropriate cooperative scheduling protocol can be
implemented. In order to perform scheduling, the 802.11
extension layer can optionally inject new control packets into
the transmit path and receive control packets from other nodes
through the receive path.

For our implementation, we chose to modify the open
source madwifi driver for Atheros chip-set based Netgear
802.11abg cards. We implemented the 2 1

2 -stage pipeline in
this driver using kernel timers. The accuracy of the pipeline is
dependent on the granularity of the clock. We set the parameter
jiffies, HZ = 1000, so that the clock has an accuracy of 1ms.
The implementation consists of an event handler that processes
various events (both transmit and receive) and schedules new
events using kernel timers to drive the pipeline. The load
exchange packets are constructed using a 802.3 packet format,
with an unused protocol value. The payload of this packet
contains basic information like node id, packet sequence num-
ber, node transmission rate along with information pertinent

to the scheduling policy. We also provide some feedback on
the results of policy in previous epoch. This packet is injected
into the transmit path of the driver with an appropriate 802.11
header with broadcast destination address. On the receive path,
load exchange packet is intercepted by the core event handler
so that it can update its global state for that particular cycle.
Similarly, upon receipt of a beacon or any other synchronizing
packet, the core event handler intercepts the packet, records
the internal timestamp so that it can synchronize with other
nodes.

III. EVALUATION

In this section, we evaluate the feasibility and performance
of Covenant. The accuracy and performance of Covenant
is dependent on many things such as the frequency of the
control packets (load exchange packets) are transmitted, the
parameters of the system such as epoch values, the number
of nodes in the system and so on. So, in this section, we use
targeted experiments to evaluate the feasibility of Covenant
on our test-bed.

A. Load exchange packets

The load exchange packets are the control packets of the
mechanism and hence it is important for these control packets
to:

• be transmitted on time by the hardware on the node; and
• be received by other nodes in their load exchange stage.
The first requirement can fail since both control and data

packets (either from this node or other nodes) share the
medium. Moreover, due to our pipelined design there is always
an overlapping scheduling phase where data packets are being
transmitted. Due to this competition, the load exchange pack-
ets can suffer delays. One way to alleviate this is to insert the
packet into the highest priority queue among multiple priority
queues that typically are supported by many wireless cards.
If there is only one priority queue, we can insert the load
exchange packets at the head of the transmit queue directly,
which again ensures that the load exchange packets are given
higher priority than the rest of the packets in the scheduling
stage of the pipeline. Finally, if the 802.11 DCF is fair across
nodes, the load exchange packets get transmitted within the
allocated budget of time.

On the other hand, even if a given node transmits the
load exchange packets on time, it might still be the case
that the packet is not received in the corresponding load
exchange stage of the receiver, perhaps due to imperfect time
synchronization between the transmitter and receiver pipelines.
Hence, time synchronization is extremely important to ensure
that load exchanges happen between nodes perfectly.

To study the effect of background traffic on load exchange
packets we performed an experiment where a Covenant node
shares the channel with two other wireless nodes. To saturate
the channel the two 802.11 nodes continuously generate UDP
traffic as fast as possible without performing any flow control.

Figure 3 shows the effect of this background traffic on
the arrival times of the load exchange packets. This data is
obtained by a passive sniffer (an 802.11 node in monitor
mode) operating in the same channel as the nodes. The
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graph plots difference between expected arrival time of the
load exchange packets and the actual arrival time. In ideal
conditions, the load exchange packets should arrive every
epoch time period (20ms) and hence the difference should
be zero. As the first 10 seconds of the graph shows, this is
the case when there is no background traffic. Between 10 and
50 seconds two competing wireless nodes start transmitting
packets as fast as they can. This affects the jitter experienced
by the load exchange packets due to increased contention in
the wireless medium. As the figure shows, the worst case jitter,
when the channel is saturated, does not exceed 1

2 the epoch
time shown by the straight line at 0.01 sec. Thus for an epoch
time of 20ms all the load exchange packets are sent within
the load exchange stage.

Since each load exchange packet is essentially a broadcast
packet there are no explicit acknowledgments. This leads to
packet losses during channel congestion. In the experiment
above, we observed a packet loss of 2%. The loss of load
exchange packets can lead to incomplete knowledge of the
system load. To avoid this problem, we can maintain a short
term history of load exchange packets and extrapolate demand
estimate on a load exchange packet loss, although we have not
yet deployed this optimization yet. Both the packet losses and
jitter are smaller when the channel is not fully saturated or
when TCP traffic is used (< 1% packet loss).

The second requirement needs some way of synchronizing
the pipeline stages at all the participating nodes. As explained
in design section, we propose to use beacons to achieve this
synchronization. Beacon interval values are commonly set to
102.4 ms and they use microsecond granularity while most
kernel timers use millisecond granularity or higher. This could
be a problem since we can’t precisely sync with the beacons.
Moreover another constraint is that all the epoch intervals must
have the same time period. We solve this problem by using
varying epoch times that averages to the beacon intervals while
keeping the variations small and bounded. The epoch time
period is calculated as

next_epoch_int = ! beacon_int

num_epochs
× epoch_val#
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Fig. 4. Timeline of load exchange packets and beacons. There are three
different snapshots (S1, S2 and S3) each showing the beacon arrival times,
node 1 load exchange packet arrival times and node 2 load exchange packet
arrival times. The top two snapshots use a different scale of timeline.

where next_epoch_int is the time period for the next pipeline
stage, beacon_int is the beacon interval, num_epochs is a
constant decides how many epochs are there between any two
beacons and epoch_val decides which epoch the pipeline is in
between two beacons. This mechanism makes bootstrapping
a new node very simple. When a new node wants to join
the system it uses the last received beacon (which is always
maintained by all the nodes) to figure out which epoch it has
to join and starts accordingly.

Figure 4 illustrates the performance of this technique. In this
experiment, two Covenant nodes try to synchronize with each
other. We use a sniffer to monitor the traffic and try to see the
effect of saturating the channel using UDP background traffic
similar to the previous case. The graph depicts three different
snapshots of the system. The bottom snapshot representing a
timeline of 300 ms, shows Node 1 joining the system. Node
2 is clearly synchronized with the beacon and Node 1 uses
the last seen beacon at 4.5s to bootstrap. The snapshot 2
represents a timeline of 1.5sec (different scale) and shows that
synchrony is maintained in longer timescales also. Also note
that the beacon packet got lost near 15 sec but the nodes
stay synchronized. The third snapshot is for 1.5 sec but with
background traffic. Due to competing traffic there are more
packet losses in this case but the nodes stay synchronized.

B. Number of nodes

The number of nodes participating in the scheduling disci-
pline is another significant factor affecting performance. More
nodes imply more load exchange packets which can consume
bandwidth and capacity. One approach to solving this problem
is to increase the epoch time periods, which in turn frequency
of load exchange. But, this would cause packets to experience
larger delays. The complete size of the load exchange packet
we have implemented including 802.11 headers is 208 bytes.
If we include the time for other 802.11 actions (e.g. DIFS,
PLCP, etc.), the airtime consumed by this packet for 802.11b
card operating at 11 Mbps is 270µs and for 802.11a at 36
Mbps it is 148µs. The bandwidth consumed by the control
channel is 12.8Kbps (approximately .1% for 802.11b at 11
Mbps) per node when operating at 20ms epoch periods. As
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the number of nodes increase the saturation capacity also drops
[10] and hence this value may become more significant. For
ten nodes, the control channel will occupy 270µs + δ (δ is
the contention backoff time) for each node. Our solution is
to increase the epoch time of the pipeline stages as a tunable
parameter to offset this effect.

C. Epoch time period

The main parameter of the mechanism is the time period
of the pipeline stages. This becomes more critical when the
estimation stage uses buffering. This would contribute to
packet delay and jitter which can affect both UDP and TCP
traffic. The choice of this parameter also reflects a tradeoff
in the system. A smaller value would make Covenant more
transparent to other layers but decreases scheduling efficiency
and increases control overhead (more load exchange packets).
A bigger value would have the opposite effect. In this section,
we analyze the effect of the time period on UDP and TCP
traffic.

UDP traffic is the most common means of transport for
multimedia applications. To study the effect of Covenant, we
use evalvid [11] to trace the packet flow of a real multimedia
stream. For this experiment, a node running Covenant streams
the multimedia file (MPEG-4 video) over the access point to a
networked machine. Traces are collected at both ends to study
the delay and jitter caused by Covenant. This setup is repeated
using a regular 802.11 node to compare performance. The
mean delay increases with the epoch time since packets are
buffered longer in the estimation stage (not shown in a figure
due for brevity). Compared to the regular node at 0 whose
mean delay is at 8ms, the delay is slightly more than doubled
to 18ms for a 20ms epoch. For non-real time multimedia
streaming this delay will be easily captured by a playback
buffer at the receiving side. For interactive multimedia traffic,
adding a 10ms delay may affect the performance if the
cumulative delay (Covenant + network) becomes larger than
that the codec can handle. For example, the VoIP can handle
a delay of upto 250ms in the network.

Packet jitter was also not affected by the epoch time. This
is because multimedia streaming from a media source with
playout buffer (like playing from stored media) will generate
packets at fast rates. Since buffering in Covenant can only
shorten the gap between the packets, it does not affect packets
that are anyway very close to each other. Further because
of the pipelined design, packets separated by an estimation
stage also don’t have any jitter in them. Hence, Covenant
does not affect the inter-packet delay in this case. But this
may not be valid for real time interactive traffic that generates
packets in a periodic fashion (e.g., 20ms inter arrival time for
VoIP packets). In this, case we can use passive estimation as
suggested in the design section.

The effect of Covenant on TCP traffic is a direct increase
in the RTT as perceived from Covenant nodes. We performed
experiments to study the extent of these effects while varying
the epoch times. We evaluate TCP performance by measuring
throughput in two different settings – LAN and WAN. In
the LAN setting, a Covenant node transmitted packets to a
wired desktop sharing the same access point. In the WAN
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setting, we used the planet-lab node in Cornell University and
the Covenant node in San Diego. Although Covenant has an
asymmetric effect on traffic (only outgoing traffic is affected),
it can still impact both directions of closed loop protocols
such as TCP. Hence, we tested the effect on both upload and
download TCP traffic (shown in Figure 5). As expected, in-
creasing RTT increases as the epoch time increases. Since the
effect of epoch time on RTT is apparent, we plot throughput
(median amongst five measurements) versus RTT instead of
epoch times. As the graph shows, the effect of Covenant is
more significant in the LAN than the WAN traffic since the
wireless link is the bottleneck link in the former. The smallest
RTT value is the base case when the node is running on regular
802.11. For the LAN setting at 20ms, the drop in throughput
is very marginal – around 0.3 Mbps for upload and download.
However, as we increase the epoch period from 20ms to 60ms,
we observed significant throughput loss (about 2.5 Mbps)
suggesting that smaller epoch values are preferable for TCP
throughput intensive connections when the base RTT is small.
For the WAN setting, there is no effect for the upload traffic,
while download traffic suffers by 0.1 Mbps. We consider
this epoch value to be a sufficient tradeoff between affecting
TCP performance and Covenant performance. Another effect
is that buffering ACKs affects TCP more in both WAN and
LAN settings. The reason is that ACKs control the congestion
response in TCP, and therefore delayed ACKs can be much
more harmful to TCP throughput than that of the data packets.

In our analysis of the Covenant extension layer, we noticed
that a 20ms epoch value is a good choice for tradeoff between
delay and overhead. We use this value for implementing
Covenant in our case studies. But Covenant provides the ben-
efit of being tunable to meet different demands. For example,
if the number of participating nodes go up, the epoch values
can be set higher. This translates into smaller control overhead
and more time in the load exchange state to receive other load
exchange packets (to overcome high contention delays). For
delay sensitive traffic, making this value smaller will reduce
the delay experienced.

IV. CASE STUDY

In the last two sections, we introduced the design of
Covenant, its evaluation and performance. The success of this
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framework hinges on realizing its benefits in a real world
scenario. Therefore, we use the home networking scenario in
order to demonstrate the benefit of this framework.

Wireless home networking is a new frontier for 802.11
networking [12] [13]. 802.11 networks’ initial growth was
supported by widespread adoption of wireless data networking
in the home environment. But for 802.11 to grow into a
complete networking solution for homes, certain challenges
have to be addressed. Some of the typical characteristics of
wireless home networks are as follows.

• Diverse traffic: Networking in home environment is not
restricted to PCs and laptops anymore. Devices like
DVD players, VoIP phones are also data sources and
destinations in the network. Broadly, media devices,
communication devices and computing devices are part of
the home network. Each group has its own set of features
and requirements for the traffic flow. Conventional 802.11
devices are not designed to handle this variety, since
the 802.11a/b/g protocols only provide fair packet based
sharing among all participants.

• QoS requirements: Multimedia traffic needs some band-
width guarantees for successful transmission. Interactive
voice traffic require higher priority and are sensitive to
jitter, while TCP occupies any unused bandwidth for
transmission. 802.11 a/b/g cannot handle any of these re-
quirements since they operate for providing basic packet
delivery in the wireless network and do not provide
mechanisms to support service differentiation.

• Rate diversity: It is common to have different nodes in
a home environment operating at different rates because
of their relative positions to the APs or to each other. In
such situations the aggregate throughput of the system
is brought down due to packet based sharing of 802.11
[14]. This may not be a favorable policy for other traffic
flows.

• Packet diversity: Packet sizes also vary greatly in such a
network. For example, voice packets are 300 bytes in size
[15], UDP streaming packets about 1300 bytes and TCP
packets are 1500 bytes. This could also lead to unfairness
in sharing since 802.11 does not account for packet size
but just the number of packets in allocating the share [6].

• QoS-node associativity: Each node has a distinct require-
ment for its traffic flow. Since most nodes are monolithic
in terms of the traffic they generate. For example, DVD
players generate high bandwidth UDP packets, VoIP
phones generate high priority real-time traffic. Hence it
is easier to decide on QoS policy at the link layer for
higher layer traffic.

• Cooperative allocation: Since nodes belong to the same
domain, they can cooperate to enforce globally optimal
policy.

• Full duplex packet flow: Unlike conventional data net-
works where traffic is predominantly download, home
network scenarios involve an equal share of upload and
download traffic. Typically, laptop clients which generate
web traffic tend to be download intensive, while video-
streaming server tends to be upload intensive. Of course,
devices such as VoIP phones are both upload and down-
load intensive.

From the points above, it is clear that there are many
challenges that need to be addressed for making 802.11 viable
in this scenario and the architecture of the system is favorable
for Covenant deployment.

A. Experimental setup

We performed most of our experiments on two Dell Inspiron
laptops running on linux-2.4.28 kernel with the Covenant
drivers. In order to emulate a realistic setting, we chose to use
a conventional access point and all the destination nodes were
machines on the wired network connected over a 100BaseT
ethernet interface. This way, we ensured that all the traffic
flow in the wireless channel is controlled by Covenant. All
traces were collected at source, destination and a passive
sniffer operating in the same channel. The experiments were
conducted in both 11a and 11b network depending on the
baseline capacity required. It is important for the nodes to
estimate the channel capacity to calculate their share based on
the scheduling policy. We use common estimation techniques
based on the transmission rate, physical and MAC layer
overhead [16].

B. Rate and packet diversity

802.11 provides fairness on a per-node basis without any
flexibility for different policies. Suppose there are two nodes,
one with a lower transmit rate and the other with a higher
rate. Since 802.11 provides equal number of transmissions
to both the nodes, that means the aggregate throughput of
both the nodes considerably reduces. This is referred to as the
802.11 performance anomaly and has been studied before in
literature [6], [17]. We show how we can alleviate this using
Covenant.

In our experimental setup, we used two nodes with regular
802.11 drivers using the 802.11a protocol. The nodes were
running an UDP packet generator (at full rate) to a desti-
nation over the wired network in the LAN. The throughput
is recorded at the destination. As Figure 6(b) shows, the
throughput of node 1 which is operated at 36Mbps is brought
down by the throughput of node 2 whose transmission rates
varies (6,12,18,24 and 36Mbps). All the plotted values are
averaged over 10 runs. The aggregate throughput of the system
suffers because this property. We resolve this problem by
sharing load and the transmission rate in the load exchange
packets. Thus each node is aware of the number of nodes
participating in the following scheduling stage, their load and
the rates their operating. From this information, a simple air-
time based sharing of the scheduling stage can be estimated.
If any airtime slice is under-subscribed, the free time is
redistributed among oversubscribed nodes.

Figure 6(c) shows the result of using this technique for
improving aggregate throughput. The expected throughput for
node 2 should be same as when it is sharing with another node
at the same rate. This is consistent with the figure when node
2 is at 36Mbps. The aggregate throughput has also improved
compared to Figure 6(b). A similar approach is used for packet
diversity. Since each node is aware of the load (bytes to
transmit) at other nodes, byte based fairness is achieved by
allocating equal number of bytes at all nodes during each
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(b) Without Covenant
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Fig. 6. Variation of aggregate bandwidth of two nodes with unequal transmit rates. In the subfigure (a), node 2 is configured to operate at 36 Mbps, while
node 1 varies from 6 to 36 Mbps. Without Covenant, we can see that node 1 operating at lower rates affects the aggregate throughput achieved significantly.
In the subfigure (b), we use Covenant to ensure that we split the bandwidth using air-time instead of channel access fairness provided by regular 802.11.

 0

 5

 10

 15

 20

 0  10  20  30  40  50  60  70  80  90

T
hr

ou
gh

pu
t (

M
bp

s)

Time (s)

Video

(a) Media traffic without contention
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(b) Media traffic with contention (UDP traffic)
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(c) Media traffic with contention(UDP traffic) and
Covenant

Fig. 7. In this experiment, we study the effect of Covenant on a media stream with and without contention from other UDP traffic generators. The media
node is configured to obtain at least 3 times the bandwidth received by another node.

scheduling stage. The effect observed is similar to the previous
case.

C. Bandwidth reservation

The notion of bandwidth reservation is not available in
802.11. To achieve this with Covenant, we assign a priority
mode and level to each node indicative of its requirements.
These two values give a greater degree of freedom in imple-
menting different QoS policies. This enables the system meet
unique requirements of each traffic. For example, an adaptive
video traffic may just need a larger share of the capacity as
much as possible. On the other hand, a high quality video
traffic would need a guaranteed throughput. To meet these
varied demands, the priority mode helps decide the kind of
QoS required. There are two kinds of scheduling disciplines
we have experimented with: proportional priority and strict
priority.

Proportional priority. In the first case, we implemented
proportional priority, in which each node is assigned a weight
to decide its share of the resource. The resource could be
air time or the size of data to send and the weights decide
the proportion of the resource each node gets. Similar to
the previous experiment, any unused resource is redistributed
among oversubscribed nodes thus not wasting any available
bandwidth. Let wi, ri and bi denote the weight, operating rate
and load in bytes at each node i, then the share for the node
is calculated as

sharei = wi × τ × ri +
w′

i

n − k

k∑

j=1

(wi × τ × ri − bi)

where n is the total number of nodes in the system and k is
the number of under-subscribed nodes. w′

i is the proportional
weight among the remaining n-k nodes.

The experiments for studying this feature is performed using
a popular media server (videolan [18]) playing a high quality
variable bit rate MPEG-4 file at one of the nodes (running
regular 802.11) while the receiver is a wired desktop in the
same LAN. We used 802.11a network for this experiment
so that the available channel capacity of 802.11a (which is
much larger than 802.11b) can sustain the video clip we
experimented with.

Figure 7(a) shows the instantaneous bandwidth measured
at the receiver when only the videolan node is transmitting.
Figure 7(b) shows the same graph with a background UDP
traffic generated by another node. As soon as the videolan
starts at 8 seconds, 802.11 fair sharing makes the two node
share the channel equally. Compared to the single node case,
the videolan traffic is affected by the UDP flow and its average
bandwidth drops to 11Mbps from 13.8Mbps in the previous
graph. Figure 7(c) shows the same experiment but with the
two nodes running Covenant with air-time as the resource. The
videolan node is assigned a weight of 3 while the UDP node is
assigned a weight of 1. As the figure shows the videolan node
now achieves the same bandwidth as the node in Figure 7(a).
Another interesting observation is that the UDP traffic fills in
any under-subscribed airtime (due to variable bit rate) with its
traffic. This represents the advantage of using Covenant where
it lets the high bandwidth traffic to perform unchanged while
at the same time make optimal use of the resource.

Strict Priority. The next policy we use is strict priority,
in which the priority level decides who get first share of the



RAMANI et al.: COVENANT: AN ARCHITECTURE FOR COOPERATIVE SCHEDULING IN 802.11 WIRELESS NETWORKS 9

resource. Therefore, the highest priority node gets full share
of the channel depending on its load, while the remaining
resource is allocated to the next higher priority and so on. For
this experiment, we used a similar setup to the previous ex-
periment. This experiment, however, differs from the previous
one in the following aspects.

• First, this experiment is run over 802.11b wireless net-
work instead of 802.11a, which has considerably lesser
available channel capacity.

• Second, the video stream (shown in Figure 8(a)) is
different from that of previous experiment (shown in
Figure 7(a)). The video stream in this experiment has
a peak bandwidth usage of 4.5 Mbps in comparison with
about 15 Mbps of the previous experiment.

• Third, we experimented with a different scheduling disci-
pline, strict priority instead of the proportional scheduling
in the previous experiment.

In Figure 8(b) when the UDP traffic shares the capacity with
the stream, we can observe that the bandwidth received by the
media stream drops from 4.5 Mbps (in Figure 8(a)) to 3 Mbps
that leads to a significant loss in quality. Moreover the media
stream takes 12 seconds which is longer time to complete
compared to 10 seconds in Figure 8(a). In Figure 8(c), the
media stream traffic is given higher priority to complete its
throughput every scheduling stage. The UDP traffic only uses
up any remaining resource left in the stage. As the graph
shows, the throughput of the UDP traffic remains the same
while the UDP traffic throughput drops down to 1 Mbps. Thus,
using this scheduling discipline, we can ensure nodes receive
bandwidth in the order of their priority, highest priority to the
lowest priority, very easily with the Covenant architecture.

V. DISCUSSION

Covenant is a solution with a wide range of applications.
The ability to control packet scheduling and its transmission
parameters along with global knowledge can be used to add
novel and valuable features to 802.11, in addition to the
scheduling disciplines outlined in this paper. For example,
Covenant can be used to improve the performance of the
SPARTA protocol [8] for energy conservation. SPARTA uses
information about load on other nodes to schedule packet at a
slower rate to save power. By using Covenant, this information
is readily available and can lead to accurate selection of rate
among each nodes. Covenant can potentially be applied in
many other situations. For example, we can use Covenant to
reduce interference in mesh networks [19]. We will examine
such applications in our future work.

Our implementation of Covenant assumes a standard chan-
nel capacity based on theoretical calculations. 802.11 spectrum
being a highly noisy and variable channel can result in varying
saturation capacities depending on location, interference and
movement. The channel capacity is also based on the assump-
tion that all the participating nodes use Covenant. This may
not be the case if some legacy nodes are also being used in
the neighborhood. In both these cases, the estimated saturation
capacity using theoretical approach can be inaccurate and lead
to an attrition of Covenant benefits. One approach would be
use rate estimation techniques for measuring channel capacity

similar to [20]. This estimation technique can also benefit
from information sharing using Covenant. For example, if the
channel gets noisy due to interfering signals for non-802.11
devices, this effect will be noticed in all the other nodes. If the
estimation technique used the information from other nodes,
it can converge to the new rate faster.

Since nodes in Covenant share information about their load,
they can estimate their share of the capacity. This knowledge
can be used to indicate status regarding the network conditions
to the upper layers. This up-call can be useful in applications
that can adapt to network traffic [21]. One way of avoiding
jitter is to replay the traffic as it comes to the extension layer
thus maintaining inter-packet distance (over time). The current
version of Covenant schedules all the packets at the beginning
of the scheduling stage leading to jitter. This solution needs
careful implementation to avoid timing issue in the scheduling
stage leading to under-subscribing.

Note that during the load exchange phase, each node
sends its estimation result by a broadcast packet. However,
potentially this broadcast packet may not be received by all
receivers in the interference range. We avoid this problem in
infrastructure wireless LANs since the load exchange packets
are typically forwarded to the access point which then re-
broadcasts it to the rest of the nodes (unless each node spoofs
the 802.11 frame as though it is actually broadcast by the
AP). This re-broadcasting will typically ensure all the required
nodes hear the load exchange message. In ad hoc wireless
networks where there exists no such access point, we can only
solve the problem by introducing a forwarding process. This
problem is outside the scope of this paper; we consider it as
part of our future work.

VI. RELATED WORK

The idea of using software approach in wireless networks
is a popular one [22]. But with regards to 802.11, limitations
of firmware APIs and support makes it difficult to implement.
To our knowledge, our solution is one of the few practical
implementations of this approach in 802.11. Our work is
similar to the Overlay MAC [23] approach which is designed
to implement a TDMA mechanism over the underlying 802.11
hardware. Our solution differs in the fact that we use explicit
information sharing that can consume more resource but
allow for highly optimal scheduling (dynamic knowledge of
estimate). The pipeline mechanism and varying epoch intervals
are also unique to our solution and our demands on clock
synchronization are more relaxed.

Using explicit broadcast mechanisms for providing a control
channel to add functionality is a common approach in many
scenarios. Catch [24] performs information sharing using
broadcasts packets to solve the free-rider problem in mesh
networks. In most of these solutions the tradeoff is between the
overhead and the benefits. Similarly Covenant can be practical
only in scenarios where the advantage of having control over
packet scheduling outweighs the capacity overhead of load
exchange packets: like our case study.

The main alternatives for QoS and service guarantees that
exist today involve using priority based channel access at the
physical layer (eg. [4], [25], [26] and the references therein).
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(a) Media stream without contention.
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(b) Media stream with contention.
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(c) Media stream with contention using Covenant

Fig. 8. In this experiment, we study the effect of Covenant on a media stream both in the presence of contention and without contention from other nodes
in the system. For these experiments, we provisioned that the node that transmits the media stream has the highest priority.

For example, 802.11e standard involves providing faster access
to the channel by modifying the DIFS (Distributed Inter Frame
Spacing) for higher priority packets thus providing statistical
guarantees. We outline the advantages and disadvantages of
Covenant in comparison with these approaches.

Advantages and disadvantages of Covenant. Covenant
fundamentally does not require any hardware upgrades and
thus can operate with a wide install base of 802.11 a/b/g
wireless cards. In contrast, the DIFS-based schemes require a
change in the standard forcing firmware or hardware upgrades
which can be difficult to achieve. Covenant also provides
a flexible platform for implementing alternate approaches
such as the time-based regulator (TBR) suggested in [6]
that provides air-time usage fairness across nodes. It is not
clear how such schemes can be implemented using the DIFS
approach.

Covenant explores the other alternative of performing these
in software with some tradeoffs. Another critical feature
available in Covenant, is the ability to tune parameters like
epoch times, priority mode and value. This degree of free-
dom is very critical in QoS implementations. 802.11e [26],
the new standard for providing QoS guarantees, may face
problems at high loads and cannot make strict guarantees.
In these situations, Covenant can provide a convenient and
easy alternative for various priority schemes and also handle
the problem of rate diversity. To this extent, Covenant can
be used in compliment with 802.11e devices to provide more
tunability and performance. Covenant can also benefit from
802.11e by making load exchange packets high priority for
best effort delivery.

Because Covenant inherently provides “macro” scheduling
(scheduling in sets of packets) as opposed to the existing
schemes, Covenant provides only coarse-granularity QoS as
opposed to the other DIFS-based approaches that can imple-
ment per-packet priority (or micro-scheduling). Many typical
scenarios, however, do not require per-packet scheduling and
hence can be sustained using our mechanism.

Covenant requires cooperation across nodes, which inciden-
tally, other schemes also require. If all nodes in the wireless
channel use the same low value of DIFS, then the QoS
functionality in 802.11e will not be effective. Thus, in this
regard, we believe the assumption of coordination is not new.

VII. CONCLUSIONS

Wireless networks based on 802.11a/b/g technology have
enjoyed tremendous success in terms of their penetration into
various application domains – some of which are unfore-
seen. These application domain specific requirements such
as service differentiation are currently being addressed by
new MAC protocol standards. In this paper, we evaluated in
depth Covenant, a cooperative scheduling layer that allows
the implementation of flexible scheduling policies with min-
imal changes to the widespread 802.11a/b/g devices. Using
experiments, we have shown that Covenant can be adjusted
and tuned to a flexible mix of traffic types with minimal
impact on the applications. Moreover, such flexibility can
be achieved with only a small fraction (<0.1% per node)
of the available channel for control packets. We also show
real deployments of Covenant in home gateway scenarios to
illustrate the applicability of Covenant in practice. While we
have only began to scratch the surface, it appears that our
architecture can be very useful in other application domains
that require some form of cooperation.
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