
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL., NO. , MONTH YEAR 1

Fault Localization via Risk Modeling
Ramana Rao Kompella, Jennifer Yates, Albert Greenberg, andAlex C. Snoeren,Member, IEEE

Abstract— Internet backbone networks are under constant
flux in order to keep up with demand and offer new features.
The pace of change in technology often outstrips the pace of
introduction of associated fault monitoring capabilities that are
built into today’s IP protocols and routers. Moreover, some
of these new technologies cross networking layers, raisingthe
potential for unanticipated interactions and service disruptions,
which the individual layers’ built-in monitoring capabili ties may
not detect. In these instances, operators typically employhigher-
layer monitoring techniques such as end-to-end liveness probing
to detect lower- or cross-layer failures, but lack tools to precisely
determine where a detected failure may have occurred. In this
paper, we evaluate the effectiveness of using risk modelingto
translate high-level failure notifications into lower-layer root
causes in two specific scenarios in a tier-1 ISP. We show that a
simple greedy heuristic works with accuracy exceeding 80% for
many failure scenarios in simulation, while delivering extremely
high precision (greater than 80%). We report our operational
experience using risk modeling to isolate optical component and
MPLS control-plane failures in an ISP backbone.

I. I NTRODUCTION

OPERATIONAL backbone networks are intrinsically ex-
posed to a wide variety of faults and impairments. The

networks are large, geographically distributed, and constantly
evolving with complex hardware and software artifacts. A
typical tier-1 backbone network consists of over a thousand
routers from different vendors, with disparate feature sets, act-
ing in various roles in the network architecture, supportedby
access and core optical transport networks involving more than
two orders of magnitude more network elements. Backbone
networks are layered in an attempt to help contain complexity
within simple well-defined abstractions; in practice, however,
layering often gives rise to additional, complex failure modes
involving interactions between the different layers.

A large fraction of any tier-1 provider’s time is spent
coping with operational failures. The essential problem of
fault management is to detect, localize, mitigate and ultimately
correct any condition that degrades network performance. To
assist in fault management, many network elements (such as
routers) are designed to continuously monitor certain behaviors
(e.g., link connectivity) and raise an alarm in the event of
failure. In some cases, the network element can even perform
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automatic recovery actions such as re-routing packets through
other functional paths. In other cases, the alerts are transmitted
to semi-automatic fault management systems [16], which assist
a human operator in troubleshooting the failure. The challenge
in diagnosing many problems is that alarms indicate only that
a network element observed a deviation from normal behavior
(e.g., link failure or probe packet loss); the actual fault could
lie anywhere in the network (e.g., at a downstream router or
optical amplifier). In other words, the element that issues an
alert is not necessarily the cause of the failure. Moreover,faults
in lower layers are frequently first reported by monitoring
systems at a higher layer. Hence, cross-layer associationsare
critical for accurate localization.

In this paper, we consider the effectiveness of an automated
fault localization framework based onrisk modelingto identify
possible network failure locations given a set of potentially
related alarms. At a high level, risk modeling involves mapping
the dependency relationships between observable events and
potential causes. For example, a single fiber cut can simulta-
neously affect multiple IP links that are carried over the fiber;
therefore, the fiber represents a shared risk for all the IP links
that traverse it.

While we believe that the risk modeling framework itself
may be generally applicable in other scenarios, the construc-
tion of a complete and accurate risk model is often extremely
challenging, and in some cases may not even be possible.
Thus, we study the performance of risk modeling in the context
of a restricted class of faults for which we can indeed construct
practical risk models. In particular, we apply risk modeling to
two distinct problems—link and path fault localization—that
have been observed in practice in ISP backbone networks. In
each instance, we collect failure signatures from a fault detec-
tion system deployed in a tier-1 ISP and construct a topology-
dependent risk model. The signatures and risk models are
then input to a localization algorithm that outputs a hypothesis
corresponding to a set of likely faults in the network.

LINK FAULT : In the first scenario we study, an IP network is
constructed with point-to-point links (optical circuits)between
different routers on top of an underlying optical topology.
Monitoring alarms associated with optical circuit failures are
typically generated on an individual basis—for example, a
router failure will appear as a failure of all links terminating at
that router. Best current practice requires a manual correlation
of the individual link failure notifications to determine that
they are all because of a common network element (e.g.,
router). In more complicated failure scenarios, however, it
is substantially more challenging to group individual alarms
into common groups, and often difficult to even identify in
which layer the fault occurred (e.g., in the transport network
interconnecting routers, or in the routers themselves).

PATH FAULT: In the second scenario, we consider an MPLS
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network, where MPLS labels are established between two edge
routers along the shortest path identified by the underlying
interior gateway protocol (IGP) such as OSPF or IS-IS. Such
an architecture is currently used by many tier-1 ISP networks.
One commonly observed failure scenario occurs when OSPF
re-routes due to a change in IGP link weight, but MPLS does
not update its label-switched paths accordingly. Therefore,
all the packets belonging to that particular MPLS tunnel
attempt to traverse the old path only to be dropped within
the network. Another common reason for such black holes
involves configuration or operator error [9]. For example,
a human may forget to enable MPLS on a newly added
interface causing MPLS-switched packets to be dropped at
that interface.

In each scenario, we evaluate the efficacy of a greedy
localization heuristic using real failure data and risk models
constructed from monitoring systems deployed on a tier-
1 backbone network. Our results show that a simple risk-
modeling approach can deliver useful results even with im-
perfect dependency models and inaccurate failure data. While
researchers have previously proposed sophisticated localiza-
tion algorithms based on Bayesian inference [31] and belief
propagation [34], we demonstrate that greedy heuristics are
both reasonably accurate (over 80% in our evaluation) and
robust to the noise and errors found in real alarm and depen-
dency data. The system described here is now in operational
use at a tier-1 provider.

The remainder of this paper is organized as follows. We
introduce the risk-modeling approach, localization algorithms
and system architecture in Sections II, III, and IV respectively.
We then present simulation results and experience with real
data for both the systems in Section V We present a brief dis-
cussion on insights that we have learnt through our experience
in SectionVI. Finally, we present related work in Section VII
before concluding in Section VIII.

II. SHARED RISK ANALYSIS

The key idea for localization of the two failure scenarios
mentioned earlier is shared risk analysis. Roughly speaking, a
physical object such as a fiber or an optical amplifier represents
a shared riskfor a group of logical entities at an upper layer
such as the IP layer. That is, if the optical device fails or
degrades, all of the IP components that rely upon that object
fail or degrade. Similarly, a link between two routers can form
a shared risk for multiple MPLS tunnels (or end-to-end paths)
that pass through that link. In the literature, such associations
are referred to asShared Risk Link Groupsor SRLGs [6]. This
concept is well understood in the context of network planning
where backup paths are chosen such that they do not have
any SRLGs in common with the primary path, and sufficient
capacity is planned to survive SRLG failures. The application
of risk group models to real-time and offline fault analysis,
however, has yet to be explored.

In typical failure scenarios, network operators often require
an accurate cross-layer view of the network to localize the
root cause. Thus, in many ISPs, fault localization is performed
at a centralized location where the required cross layer as-
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Fig. 1. Example of SRLGs for the two example failure scenarios considered
in the paper.

sociations are easily constructed. Of course, the fault notifi-
cations themselves are generated by the various devices and
components distributed throughout the network. Within the
centralized location, however, several (possibly independent)
fault localization systems, each of which is customized to a
specific category of faults, often exist. The specialized nature
of these tools is due primarily to the existence of a wide variety
of faults both within as well as across layers, thus making
it difficult to create one integrated platform for all types of
faults. For example, inLINK andPATH FAULTS, the root causes
are optical component and IP interface failures, respectively;
creating a unified heterogeneous system would not only be
difficult but in fact unnecessary. In this paper, therefore,
we consider the two problems—LINK and PATH FAULTS—in
isolation, despite applying the same risk-modeling framework.

Shared risks inLINK FAULT : We construct a model of risks
that represent the set of IP links that are likely to be affected
by the failure of each component within the network. The
basic IP network topology can be represented as a set of
nodes interconnected via links. Inter-domain and intra-domain
routing protocols such as OSPF and BGP operate with a basic
abstraction of a point-to-point link between two routers. These
IP links in turn are overlaid on top of an underlying optical
network. Despite appearing logically disparate, multipleIP
links can share components in the optical network, thus leading
to shared risks in the network.

In many tier-1 backbone networks, each inter-office IP link
is carried on an optical circuit (typically using SONET). This
optical circuit in turn consists of a series of one or more
fibers, optical amplifiers, SONET rings, intelligent optical
mesh networks and/or Dense Wavelength Division Multiplex-
ing (DWDM) systems [27]. These systems consist of network
elements that provide O-E-O (optical to electrical to optical)
conversion and, in the case of SONET rings or mesh optical
networks, protection/restoration to recover from opticallayer
failures. Multiple optical fibers are then carried in a single
conduit, commonly known as a fiber span. Typically, each
optical component may carry multiple IP links—the failure
of a single physical component results in the failure of all
of these IP links. Therefore, physical elements such as fibers,
fiber spans, and optical components constitute shared risks.
In addition to the optical components, our SRLG model also
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includes routers (a shared risk for the set of links originating
at the router), modules (common to the set of links connected
to a particular module within a router) and ports (relied upon
by the interfaces themselves). We also extend beyond physical
components and include logical software entities such as OSPF
area, router software version, etc., in the list of SRLGs.

We illustrate this concept in Figure 1(a) with a simple
network consisting of five nodes connected via seven logical
IP links (circuits CKT 1 through 7 shown in upper half of
Figure 1(a)). These IP links are routed over shared optical
layer components shown in the bottom half of Figure 1(a).
These shared risks in the optical layer are denoted as FIBER
SPAN 1 to 6, DWDM 1 and 2. CKT3 and CKT5 are both
routed over FIBER SPAN 4 and thus would both fail with
the failure of FIBER SPAN 4. Similarly DWDM 1 is shared
between CKT 1, 3, 4 and 5, while CKT 6 and CKT 7 share
DWDM 2.

Shared risks inPATH FAULT: In this problem, MPLS tunnels
share individual IP links and hence form the shared risks. Each
individual link failure or degradation can simultaneouslyaffect
all the MPLS tunnels that ride through that particular link.In
fact, extending it a bit further, if there are multiple VPNs
that ride through a given MPLS tunnel that rides through a
failed link, all these VPNs are affected by a failure on that
link. However, for the purposes of this paper, we focus on the
failure of MPLS tunnels, while noting that we can extend this
arbitrarily into higher layers if need be.

For example, in Figure 1(b), edge nodes A through E are
connected via intermediate nodes F through H. Clearly, from
the figure, we can observe that the set of paths A-F-G-B, A-F-
G-C, E-F-G-C, E-F-G-B (and the corresponding reverse paths)
share a common link—the link from F to G. Hence this link
F-G forms a shared risk for this group of paths. Note that we
do not include all the optical components and other SRLGs
we model forLINK FAULT in this context as MPLS failures
do not involve optical components.

III. FAULT LOCALIZATION VIA RISK MODELING

The previous section describes two instances where a given
shared risk failure affects all the entities that are dependent
upon it. Here, we use these risk models to develop a fault
localization methodology that can aid network operators in
troubleshooting failures in an automated fashion. Our approach
has three main components—failure detection and risk mod-
eling, the core localization algorithm, and a set of refinements
to handle domain-specific imperfections. Failures detected at a
higher layer (such as failed IP links or MPLS tunnels) are fed
into a localization engine that spatially correlates thesefailures
according to the risk model (based on the underlying topology)
to identify a small set of likely locations of the failure. This
localization step is the primary reconnaissance to a final—and
often (necessarily) manual—step of actually diagnosing the
root cause of the failure and fixing the problem.

A. Failure detection and risk modeling

One of the two main inputs to a localization engine is the
failure signature. The failure signature consists of a set of
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Fig. 2. Bipartite graph modeling of the failure localization problem as done
in SCORE system.

symptoms observed due to a given failure. The symptoms
themselves are typically detected through explicit monitoring
(either through probes or lower-layer alarms). For example, in
order to check IP link integrity, each router in the network
injects periodic “HELLO” messages to the router at the other
end, which then acknowledges the receipt of the message [22].
We consider the set of IP link failures that are temporally
correlated (occur almost simultaneously) to constitute the
failure signature in this scenario. Similarly, in monitoring
MPLS tunnels for black holes, a monitoring server typically
establishes connections (using, say, GRE tunnels [12]) with
each edge router and injects periodic probes to every other
edge router in the network and reports if any of the probes
are lost. Therefore, the set of origin/destination pairs (OD-
pairs) that have lost connectivity (based on dropped probes)
constitutes the failure signature in this scenario.

The other input required for fault localization is the risk
model. We use a bipartite graph to represent the dependency
between possible observable symptoms and corresponding
likely causes as shown in Figure 2. An edge exists between a
symptom and a likely cause if that symptom can be observed
given a failure in that root cause. As shown in Figure 2, the
top partition consists of the universal set of symptoms in the
failure signature, and the bottom partition consists of thelikely
causes. We refer to the symptoms that have been reported by
the failure detection system asobservations. In LINK FAULT ,
the symptoms are IP link failures and the likely root causes are
the SRLGs such as fiber spans, optical amplifiers, etc., while
in PATH FAULT, observations are failed MPLS tunnels, while
the underlying IP links make up the potential root causes.

B. Fault localization

Once we create these risk models, we then applyspatial
correlation for fault localization. The observations that make
up the failure signature are intersected according to the risk
model to identify common shared risks. These shared risks
form the most likely explanation for the failure signature;
hence, the localization engine outputs this set of shared risks
as thehypothesis. For example, in ourLINK FAULT example in
Figure 1(a), if CKT1 and CKT4 both fail simultaneously, it is
highly likely that the failure will be in the optical component
DWDM1 since this is the only shared risk among these
circuits (or IP links). Similarly, in ourPATH FAULT example
in Figure 1(b), if the set of paths A-F-G-B, A-F-G-C, E-F-
G-C, E-F-G-B all fail in a given time interval (temporally
correlated failures), spatial correlation leads to the only link
that is common to all these paths—the link from F to G. The
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Algorithm 1 GREEDY(FailureSignature F)

1: E = {};
2: U = FailureSignature F;
3: H = {}; // Hypothesis set
4: while (U 6= {}) do
5: for (observation o ∈ U) do
6: //All SRLGs for this observation o
7: srlgVector = getAllSRLGs (o);
8: //Update stats of SRLGs in srlgStatVector
9: updateSrlgStats(srlgVector);

10: end for
11: srlgSet = identifyCandidates();
12: //Move observations covered by SRLGs in srlgSet
13: //from U to E
14: moveEvents(srlgSet, E, U);
15: addToHypothesis(H, srlgSet);
16: end while
17: return H;

localization engine would, therefore, return the singleton set
{F-G} as the hypothesis in this failure scenario.

In most situations, however, it is not as straightforward to
localize failure(s) as in the above toy examples. The localiza-
tion engine does not have access to an oracle to determine
whether a single failure, dual failure, or multiple failures
occurred in the network; it has to determine the cardinality
of the set of failures based on the failure signature alone.
For any given failure signature, there could be many different
likely explanations. Exploring all the possibilities is often not
feasible. Such enumeration is also likely to contain many
cases that are not typically observed in practice. We therefore
attempt to identify hypotheses that can explain a given failure
signature with the smallest set of failures. Our approach
is in accordance with the principle of Occam’s razor, that
suggests that the simplest explanation is most likely. In order
to find the simplest explanation (the one that hypothesizes
least number of failures), an obvious strategy is to find the
minimum set cover for the bipartite graph. Each shared risk
is associated with a set of observations according to the risk
model. While the general set-cover problem is NP-hard, the
greedy approximation finds a solution guaranteed to be an
O(log n)-approximation to the optimal [18].

We use the core algorithm GREEDY (shown in Algo-
rithm 1) to iteratively pick SRLGs that are the best according
to a metric that we define later;updateSrlgStats() computes
this metric for all SRLGs andidentifyCandidates() picks
the best SRLGs in the current iteration. It then prunes the
set of observations explained by these candidate SRLGs (in
moveEvents()) from the failure signature and repeats the pro-
cess until no more observations remain in the failure signature.
In the classic set-cover problem, the metric is the number of
new observations covered by the candidate SRLG. In other
words, in each iteration, GREEDY just picks those SRLGs
that have the largest number of edges in the bipartite graph
among those in the failure signature. For now, we deliberately
abstract theidentifyCandidates() and updateSrlgStats()

routines since the metric of interest can change according to
the particular problem at hand. In the next subsection, we
discuss suitable choices for the two problems we consider.

C. Managing imperfections

In practice, the effectiveness of the greedy approach is
limited by noise and incompleteness in the failure signature
and churn in the risk models. We explain how the algorithm
can be adapted to accommodate these imperfections in this
section.

1) Imperfections in failure signature and risk model:In
most real networks, there is constant churn due to various types
of routing, congestion, maintenance and other related events.
Due to this noise, there could bespurious observationsin the
failure signature that are not directly related to the particular
real failures that we seek to localize, thus complicating local-
ization. Besides noise, inherent inefficiencies in the detection
system or losses of failure notifications due to unreliable
transport mechanisms could lead to anincomplete failure
signature. The extent of both these imperfections varies based
on the particular domain. As with the failure signature, there
are likely to be imperfections in the risk model as well. These
imperfections also stem from inherent churn in the network,
either due to out-dated databases or an inability to obtain exact
dependencies. Similar to the failure signature, the extentof
these imperfections depends upon the particular failure domain
under consideration. We explore both imperfections in the
context of the two problem domains we consider below:LINK

FAULT suffers from relatively few imperfections, whilePATH

FAULT has many more sources of noise.
LINK FAULT . The detection mechanism inLINK FAULT uses

both lower-layer alarms (such as a loss-of-signal alarm) and
high-frequency, router-to-router probes (such as OSPF Hello
messages) to detect losses in connectivity. Therefore, detection
of IP link-layer faults is typically complete, in the sense that
all IP links that fail due to a problem in the underlying optical
network are detected with extremely high probability. A few
fault messages are sporadically dropped during transmission,
however, leading to a slightly incomplete failure signature.

The optical topology from which the risk model is computed
is more or less static1, suggesting that the risk model would be
easy to capture. In our experience, however, the risk modelsfor
the large majority of optical networks are maintained through
human-entered databases that may drift away from reality
over time leading to occasional errors in the database. These
errors can affect the localization results and must therefore be
factored into the localization algorithm.

PATH FAULT. The detection mechanism employed inPATH

FAULT, on the other hand, consists primarily of end-to-end
probes that operate at a much lower frequency. So, for many
reasonable failures, the failure signature is not complete. Of
course, if the failure persists, eventually all low frequency
probes that go through the failure are bound to detect the
failure. But this means that we need to wait for a long time

1Some optical networks perform lower layer re-routes to maskhigher layer
failures, in which case, paths need to be dynamically computed. We ignore
this detail for the purposes of this paper.
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until the failure signature is complete. Furthermore, because
the topology is large (on the order of a million paths), any
failure can affect a significant number of paths leading to
an overwhelming number of observations and a large failure
signature set. In order to operate in real time, the failure
signature must occasionally be down-sampled. Therefore, in
this domain, the failure signature is expected to be largely
incomplete. In addition to the incomplete failure signature,
noise can cause some probes to be dropped in the network
thusaddingspurious observations to the failure signature.

The risk model inPATH FAULT for MPLS paths is primarily
derived from the underlying IP topology. IP topology is
inherently subject to churn due to various routing changes
caused during failures, congestion and maintenance activities.
Therefore, the risk model needs to be computed on-the-fly
for this scenario from the topology snapshots during the
failure interval. Because the topology is extremely large,it is
often impractical to construct the entire risk model; the fault
localization algorithm needs to be designed to operate witha
partial risk model.

2) Handling imperfections through relaxed metrics:In or-
der to handle these imperfections, we use two different metrics
to identify the candidate SRLGs in each iteration of the basic
GREEDY algorithm. LetGi correspond to theith shared risk
in the network and|Gi| be the total number of observations
that belong to the SRLGGi. |Gi∩F | is the number of elements
of Gi that also belong toF , the failure signature. We define
hit ratio of the groupGi as|Gi∩F |/|Gi|. In other words, the
hit ratio of a group is the fraction of elements in the group
that are part of the failure signature. Thecoverage ratioof a
groupGi is defined as|Gi ∩ F |/|F |, i.e., the fraction of the
observation explained by a given risk group.

If we have access to the complete failure signature and
an accurate risk model, we can exploit the fact that every
failed shared risk would have all associated observations in
the failure signature. In other words, the hit ratio for the
failed shared risks should be 1, so an optimal algorithm would
select SRLGs with the highest coverage among those with
a hit ratio of 1. In theLINK FAULT , however, while we
potentially have access to the entire failure signature andrisk
model, they are likely to contain a relatively small number
of errors. In order to account for these errors, we define the
SCORE algorithm [19] that considers SRLGs with a hit ratio
greater than a particular error threshold, which is generally
slightly less than 1. We explain later in Section IV-C how we
determine the error threshold in practice. Thus, in SCORE,
theupdateSrlgStats() routine computes the hit and coverage
ratios, whileidentifyCandidates() routine picks the SRLG
with the highest coverage ratio among those with hit ratio
greater than the threshold.

On the other hand, if we do not have access to the entire
failure signature or associated risk model, we cannot compute
a meaningful hit ratio for each and every SRLG in the first
place. Therefore, in such situations, the greedy heuristicpicks
those SRLGs that have the highest coverage-ratio in every
iteration to output the hypothesis. In the resulting algorithm
MAX-COVERAGE, the identifyCandidates() routine is
similar to that of SCORE algorithm, except the condition on

the hit ratio is eliminated. Since the hit ratio is not required,
the updateSrlgStats() routine does not need to compute
it as well. This algorithm, therefore, is applicable toPATH

FAULT where we can compute the coverage ratios of all the
SRLGs but not the hit ratios.

3) Additional refinements:While our relaxed selection met-
rics allow the localization algorithm to adapt to various oper-
ational realities, our localization architecture supports further
domain-specific refinements. In particular, the input to as
well as the output from the localization algorithms can be
post-processed in order to better accommodate the needs of
the particular domain. For instance, we introduced an error
threshold above to deal with the slight possibility of errors in
the risk model forLINK FAULT ; the choice of error threshold,
however, is not immediately clear. Another problem is that the
output may still contain several root causes, some of which
exist because the algorithm is trying to explain each and every
symptom that is input to the system. This situation arises
frequently in thePATH FAULT scenario; hence, we seek to
output only the most significant root causes by effectively de-
noising the hypothesis. Another problem specific to thePATH

FAULT domain is the need to consider multiple risk-models as
the fault can be result of either the old or new topologies. We
describe refinements to address these issues in Section IV-C.

IV. SYSTEM ARCHITECTURE

So far, we have described the three required ingredients for
fault localization—a failure detection system, a risk model,
and the localization algorithm. In this section, we elaborate
on how these components are instantiated to address theLINK

and PATH FAULTS problems.

A. Failure detection

The failure signature upon which spatial correlation is
applied is obtained from various types of network monitoring
data sources depending on the particular failure scenario.
In any case, we assume a monitoring system continuously
generates a raw event stream (as shown on the left in Figure 3)
with associated timestamps. For link faults, we use router
syslogs generated by the router when it detects a link to be
down. In contrast, path failure notifications are generatedin
response to the loss of end-to-end probes that constantly poll
connectivity between various origin-destination pairs.

Data sources based on discrete asynchronous events, such
as router syslog messages, need to beclusteredto identify a
failure signature. Note that a failure can cause symptoms that
appear slightly off in time either due to time-synchronization
errors across various elements, or propagation delays in event
recording. There are many different ways to cluster events.
In LINK FAULT , we use a clustering algorithm based on gaps
between failure events. We consider the largest chain of events
that are spaced apart by a set threshold (called a quiet period)
as potentially correlated events. The intuition is that twoevents
that occur within a time period less than a given threshold (we
use 30 seconds in our system) can be attributed to the same
failure. In contrast, forPATH FAULT, due to the presence of an
excessive number of events attributable to noise in the network,
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a clustering scheme such as above results in clustering all
events together into one cluster. Instead, we divide time
into 15-minute bins. The particular choice of the bin size
is somewhat arbitrary and can be tuned in accordance with
the typical duration of a failure event, required timeliness of
diagnosis, and amount of evidence that needs to be collected.

B. Risk model

In the middle portion of Figure 3, we show how the risk
model is constructed for the two different failure scenarios.
In LINK FAULT , the risk model is constructed from disparate
databases that ISPs typically maintain for different typesof
shared risks. For example, optical layer shared-risks suchas
the SONET components that particular IP links traverse are
extracted from databases populated from operational optical
element management systems. Other risk groups such as
OSPF area, router modules, etc., are populated by periodically
polling configurations from the various network elements. The
underlying databases track the network and therefore exhibit
churn. We cope with database churn by regenerating risk
groups multiple times during the course of the day.

For PATH FAULT, we construct the risk model dynamically
from IP topology snapshots obtained through an OSPF moni-
tor [29]. Because a significant number of failures in the MPLS
domain are due to topology changes, we need to consider the
topology snapshots both before and after the failure depending
on the exact nature of the failure. Due to the dynamic nature
of the risk model, we do not construct the entire topology
for every snapshot, but instead obtain only the paths for
the OD-pairs in the failure signature. Since there could be
multiple paths between a given OD-pair due to equal-cost
multi-path routing [14], we place the OD-pair in the risk
groups corresponding to all the links that lie on at least one
shortest path between the OD-pair.

C. Localization algorithm

Finally, once the failure signature is obtained and the risk
model is constructed, we can perform fault localization as
shown in the right portion of Figure 3. We proposed core
algorithms for IP and MPLS fault localization in Section III-B;
here, we discuss additional steps of processing required ontop
of the core algorithms for each of these systems as discussed
in Section III-C.3.

LINK FAULT : Rather than fixing one particular error thresh-
old for the system, we query the SCORE algorithm with
multiple error thresholds (reducing from 1.0 to say 0.5)
to obtain many different hypotheses as shown in Figure 3.
The hypotheses obtained using different relaxations are then
evaluated based on a cost function that depends on the error
threshold and the size of the hypothesis. We use the ratio
between the size of the hypothesis and the threshold as the
cost; we seek to identify cases where a small relaxation in
the threshold (an error threshold of 0.9, say) can reduce
significantly the number of groups in the final hypothesis.

PATH FAULT: We use the MAX-COVERAGE algorithm that
iteratively selects the links covering the most observations in
the failure signature. As noted before, there are two issueswe
need to address. First, there can be potentially many different
topology snapshots within a given failure interval and the ques-
tion is which topology to use. To address this, we first generate
multiple hypotheses for a given failure signature using allthe
available topology snapshots in the failure interval, and use
a hypothesis selection algorithm, called UNION, that outputs
the union of hypotheses generated with each of the available
topology snapshots. By considering all possibilities, there is
no loss in accuracy compared to an oracle that knows the
ground-truth (and hence knows the right topology to pick),
but precision is slightly lower.

Second, recall that the localization algorithm adds suspect
links to the hypothesis until the hypothesis completely explains
all the failed probes, including those observations that arise
from inherent noise in the network. To address this, we use
a candidate selection algorithm(called ABSOLUTE) that
removes candidate links from the hypothesis that explain fewer
than a threshold number of observations and thus focuses only
on the main links in the hypothesis.

D. Implementation

For both the systems, we implemented the main localization
algorithms in C/C++ and the rest in Perl. We also implemented
a Web-based user interface for both systems. The IP fault
localization system contains slightly more than 1,000 lines of
C and about 2,500 lines of Perl code, while the MPLS fault
localization system consists of about 5,000 lines of C++ and
about 2,000 lines of Perl code.
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V. EVALUATION

In this section we evaluate the performance of systems we
deployed to address both theLINK andPATH FAULTS problems
in a tier-1 ISP backbone, using simulations as well as real
network failure data. Before describing our results, we first
present our metrics of evaluation.

A. Metrics for comparison

Ideally, we seek to evaluate the effectiveness of our al-
gorithms by comparing their output to the ground-truth for
the failures, i.e., the real root causes. We define two primary
metrics for comparing our hypothesis with the ground-truth—
accuracy and precision.

Accuracyis the fraction of elements in ground truthG also
contained in the hypothesisH , or |G∩H |/|G|. If G is a proper
subset ofH , then the accuracy is 1. Any false negatives—
i.e., excluding a failed component from the hypothesis—will
result in lower accuracy. This metric alone cannot capture the
efficacy of the localization algorithm, however. For example,
if we design an algorithm that always outputsU where U
is the universal set of elements, thenG ⊆ U by definition,
thus always leading to an accuracy of 1. Such an algorithm
obviously is not very useful in practice, however, due to its
high false positive rate.

Therefore, we defineprecision to quantify the size of the
hypothesis in relation to the ground truth. It is defined as the
fraction of elements in the hypothesis that are also present
in the ground-truth or|G ∩ H |/|H |. In effect, precision
captures the amount of truth in the hypothesis. For example,
a precision of 0.9 would imply that the 90% of the elements
in the hypothesis match the ground truth. Precision is roughly
inversely proportional to false-positive rate: 0.9 precision is
equivalent to(1 − 0.9)/0.9 = 11% false positives.

Typically, most algorithms tend to trade one metric for
the other depending on how conservative or aggressive the
algorithm is. A conservative algorithm tends to include all
the possibilities in order to achieve better accuracy while
losing precision, while an aggressive algorithm includes only
the significant ones thus gaining precision while somewhat
sacrificing accuracy. Our goal is to ensure that both these
metrics are within reasonable bounds. While false negatives
and false positives can also be chosen in place of accuracy and
precision, we chose them since they represent the usabilityof
our system more intuitively.

While precision provides one metric of conciseness, it is
often difficult to interpret given the vast difference in thesize
of the true fault set (often one or two components) and the
entire network of components. Hence, we also quantify the
ability of our system to identify a small set of candidate faults
using a metric we calllocalization efficiency. Localization
efficiency is defined as the ratio of the number of suspect
root-causesafter localization to the numberbefore. In other
words, it is the fraction of root causes that are identified
by our localization algorithm that likely explains a particular
fault out of all the root causes that could cause a given
fault. This metric is particularly useful in the context ofLINK

FAULT since it quantifies the ability of our tool to reduce

the number of physical components that an operator needs to
manually inspect. DefineGi = {gi1, gi2, · · · , gin} as the set of
shared risks that a symptomci depends on. LetF denote the
failure signature consisting of symptoms{cj1, cj2, · · · , cjm}
and H be the best hypothesis forF . Clearly, H is a subset
of U = ∪m

k=1
Gjk, the union of all possible root causes. The

localization efficiency is given by|H |/|U |.

B. Results forLINK FAULT

We begin by evaluating the accuracy of the SCORE al-
gorithm for IP fault localization within a controlled environ-
ment by using emulated faults. We used an SRLG database
constructed from the network topology and configuration data
of a tier-1 service provider’s backbone. We injected varying
numbers of simultaneous faults and studied the efficacy of the
algorithm in the presence of database errors and lossy fault
notifications.

1) Algorithm accuracy:We simulated multiple simultane-
ous failures by picking risk groups at random from the set
of all network risk groups, and inputing the union of all IP
links that are associated with these risk groups to the SCORE
algorithm. We evaluated the accuracy of the algorithm in terms
of the fraction of faults correctly localized by the algorithm.

As a baseline experiment (not shown), we measure the ac-
curacy of SCORE as a function of the number of simultaneous
faults for different types of SRLGs (ports, modules, etc.).The
accuracy of the algorithm on these data sets is greater than
95% for all types of risk groups for fewer than five simulta-
neous failures. For failure scenarios involving only a single
fiber cut, router failure or module failure, which form the
common case for hard failures, our simulation results indicate
the accuracy is near 100%. These high accuracy numbers are
expected since there are no imperfections; SCORE outputs
a wrong hypothesis only when fault signatures from two
different faults combine to produce another fault’s signature,
which is typically rare.

2) Imperfect fault notifications:Next, we simulate imper-
fections due to operational realities, such as the loss of failure
notifications. We consider three parameters: the error threshold
used in the SCORE algorithm, the number of simultaneous
failures, and the loss probability (which represents the per-
centage of IP link failure notifications lost for a given failure
scenario).

Figures 4(a) and 4(b) demonstrate the accuracy of the algo-
rithm under a range of loss probabilities for different numbers
of simultaneous failures and error thresholds. Specifically, the
figures plot the percentage of correct hypotheses as a function
of the error probability. In Figure 4(a) the algorithm error
threshold is fixed at 0.6 and the number of simultaneous
failures is varied from 1 to 5. In Figure 4(b), the algorithm
error threshold is varied from 0.6 to 1.0, while the number of
simultaneous failures is set to 3. As expected, increasing the
loss probability reduces the accuracy of the algorithm. Under
three simultaneous failure events and an error probabilityof
0.1, we can observe from Figure 4(b) that an algorithm error
threshold between 0.7 and 0.8 restores the accuracy of the
SCORE algorithm to around 90%. However, if we mandate
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Fig. 4. The sub-plot (a) shows the accuracy of the SCORE algorithm with a fixed error threshold of 0.6 with a varying number of simultaneous failures
as a function of observation loss. Sub-plot (b) illustratesthe impact of different error thresholds. Sub-plot (c) shows the localization efficiency defined in
Section V-B.3.b over 3000 real failure events.

perfect matching of failure observations to SRLGs (i.e., error
threshold = 1.0), then our accuracy in isolating our fault drops
to around 78%. This shows the necessity and effectiveness of
the error thresholds introduced into the algorithm for fault
localization in the face of noisy event observation data.

3) Experience with real failure data:The LINK FAULT sys-
tem has been operating in a tier-1 backbone network in
an off-line fashion to localize IP link failures reported in
the network for more than a year. The implemented system
operates on a range of fault and performance data, including
IP fault notifications and optical-layer performance measures.
However, we limit our discussion here to our experience with
link failure events.

a) Manual analysis of real failures: Determining
whether or not the system correctly localized a given fault
requires identification of the root cause of the fault via other
means. In many cases, identifying this root cause involves
sifting through large amounts of data and reports that is
potentially tedious. We therefore selected a set of 18 faults
for which we identified the root cause of the problem and
compared with the hypothesis output by the system.

Overall, we were able to verify manually that SCORE
successfully localized all of the 18 faults studied to the failed
network elements (shown in Table I). However, when we
used a threshold of 1.0 (i.e., mandated that an SRLG can be
identified if and only if faults were observed on all correspond-
ing IP links), we were typically unsuccessful—particularly
for router failures, and for the protocol bug reported. In
the majority of the router failures, even though these events
corresponded to routers being rebooted, the remote ends of
the links terminating on these routers did not always report
associated link-level events. This may be due to a number of
possible scenarios—the events may never have been logged
in the syslogs, data may have been lost from the syslogs, the
links may have been operationally shut down and, hence, did
not fail at this point in time, or the links were not affected
by the reboot. Independent of why the link notifications were
not always observed, the router failures were all successfully
localized when the threshold was marginally reduced. This
highlights the importance of the threshold concept in the
SCORE algorithm to localize faults in operational networks.

We studied four SONET network element failures. The
first—an optical amplifier failure—induced faults on 13 IP

links. With a threshold of 1.0 our algorithm identified eight
different SRLGs as being involved in the hypothesis. However,
as the threshold was reduced to 0.9, the hypothesis size
reduced to only two SRLGs, one of them being the actual
failed optical amplifier. Further reductions in this threshold
did not reduce the number of SRLGs in the hypothesis. Upon
investigation, we found that our SONET database was missing
one of the IP links in the failure signature. Thus, the SCORE
algorithm was unable to attribute this particular IP link to
the SONET SRLG, and instead incorrectly concluded that a
router port was also involved (the second SRLG) to explain
this individual link. The remaining 12 IP links, however, were
successfully attributed to the failed optical amplifier. This
example illustrates why lowering the threshold is required
when there are errors in the database.

The other three SONET failures were all correctly isolated
to the SRLG containing the failed network element; in two
cases we again had to lower the threshold used within the
algorithm to account for links for which we had no failure
notification. In one of these cases, the missing link was
indeed a result of the interface having been operationally shut
down shortly before the failure. Our topology snapshots are
generated on a daily basis; therefore the topology change was
not reflected in the risk model. These examples clearly indicate
the need to deal with operational issues such as incorrect data
and erroneous databases.

On another previously identified failure scenario affectedby
an SRLG database error (fiber A in Table I), the system was
unable to identify a single SRLG as being the culprit even as
the threshold was lowered, because no SRLG in the database
contained all of the circuits reporting the fault. So again,a
database error was highlighted by the system’s inability to
correlate the failure to a single SRLG.

The final case that we evaluated was one in which a low-
level protocol implementation problem (software bug) affected
a number of links within a common OSPF area. This scenario
occurred over an extended period of time, during which three
other independent failures were simultaneously observed in
other areas. When a threshold of 1.0 was used in the SCORE
algorithm, the event in question was identified as being the
result of 20 independent SRLG failures—a large number
even for the extended period of time. As the threshold was
reduced to a final value of 0.7, the event was isolated to
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Type of Component #SRLGS Final Thld #SRLGS #Correct Comment
problem Name (Thld.=1.0) (Thld.=Final) localized

ROUTER
Router Router A 27 0.8 1 1 No event reported by some links
Router Router B 20 0.9 3 3 No event reported by some links
Router Router C 12 0.7 1 1 No event reported by some links
Router Router D 1 1 1 1 -
Router Router E 18 0.8 1 1 No event reported by some links
Router Router F 1 1 1 1 -
Router Router G 4 1 4 4 One router and three links failed

MODULE
Module Module A 1 1 1 1 -
Module Module B 1 1 1 1 -
Module Module C 1 1 1 1 -

SONET
OA Sonet A 8 0.9 2 1 No observation reported by one link and

database problem
Failed
Transceiver

Sonet B 1 1 1 1 -

Short term
Flap

Sonet C 2 0.7 1 1 No observation reported by one link

OA Sonet D 2 0.6 1 1 No observation reported by one link
FIBER

Fiber Cut Fiber A 3 0.5 1 1 Database problem
Fiber Span Fiber Span A 1 1 1 1 -

PROTOCOL
Protocol Bug OSPF Area A 20 0.7 4 4 Incorrect SRLG modelling
Protocol Bug OSPF Area A 4 1 4 4 OSPF Area A MPLS enabled interfaces

TABLE I

SUMMARY OF 18 ACTUAL , DIAGNOSED FAILURES IN A T IER-1 ISP.

four individual SRLGs: three SRLGs in other OSPF areas
(corresponding to the independent failures) and the OSPF area
in question. Thus, the SCORE algorithm was correctly able
to identify that the event corresponded to a common OSPF
area. However, further investigation uncovered that the reason
why not all links in the OSPF area were affected was that
only those interfaces that were currently MPLS-enabled were
affected. Thus, an additional SRLG was added to our SRLG
database that incorporated the links in a given area that were
MPLS-enabled; application of this enhanced SRLG database
successfully localized all of the SRLGs affected by the four
simultaneous failures with a threshold of 1.0.

b) Localization efficiency:Figure 4(c) shows the cumula-
tive distribution function of the localization efficiency achieved
by our system on 3,000 faults experienced in a tier-1 ISP. Our
system appears able to localize faults to less than 5% for more
than 40% of the failures and to less than 10% for more than
80% of the failures. This clearly demonstrates that the SCORE
algorithm can efficiently ferret out likely causes from of a large
set of possible causes for a given failure. Unfortunately, due
to the extensive manual labor involved in diagnosing failures,
we do not know the true cause of all 3,000 failures and cannot
measure accuracy on this dataset.

C. Evaluation results forPATH FAULT

Similar to the previous subsection, we use both simulation
and offline analysis of real failure data to evaluate the ability

of a system based on MAX-COVERAGE to address thePATH

FAULT scenario.
We built a simulator that can inject artificial failures that

mimic real-life failure scenarios, obtain observations corre-
sponding to the failure, and then apply localization algorithm
to evaluate the accuracy. As described earlier, the entire failure
signature is generally not available for fault localization.
Therefore, for these simulations, we vary the fraction of the
failure signature and compare the accuracy and precision of
the localization algorithm. The fraction of the signatureα is
directly related to the duration of the failure and the rate at
which probes are issued. We simulate a fault detection system
that issues periodic probes from every router at a rate of one
per minute. Therefore, any persistent failure that lasts more
than a minute should be captured completely by the monitoring
system.

For our simulations, we use the same tier-1 network topol-
ogy for which we present experiences with real failure data
later in Section V-C.3. We simulate three different scenarios:
without any noise, with random noise, and with structured
noise. The scenarios without any noise, while unrealistic,
determine an upper bound on the accuracy of the algorithm.
Random noise simulates failure scenarios where the failure
signature is mixed with spurious probe losses in the network,
often due to transient congestion. In our simulations, we added
a random number of spurious observations with an average of
80 per failure. Structured noise, on the other hand, models
scenarios where failures of short duration overlap with the
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Fig. 5. Figure shows the accuracy and precision of MAX-COVERAGE for different numbers of simultaneous failures and whenrandom and structured noise
events are injected along with the actual failure. The y-axis is the average accuracy/precision measured over 500 random link failure scenarios, while the
x-axis is the fraction of the failure signature. The last twographs show accuracy and precision after applying the candidate selection algorithm to the output
of MAX-COVERAGE for random noise events. For these two graphs, we fixed the signature fraction to 0.16.

main failure(s) and appear as noise. As an arbitrary starting
point, we fail 5 links at random for 5 seconds; the simulated
“real” faults last for 60 seconds.

1) Accuracy of the localization algorithm:We measured
the average accuracy as a function of the fraction of signature,
α for varying number of simultaneous failures and for the
three different types of failure scenarios. In simulationswith
no noise, we observed that the average accuracy is well above
90% even with five simultaneous failures and only 1% of
the failure signature. Intuitively, this is because the groups
of OD-pairs that form the failure signature for each link are
large; hence, even a small fraction can create a sample of
observations that can uniquely identify the injected failure.

When random noise is introduced into the failure signature
(shown in Figure 5(a)), we observed that the accuracy is
reduced. In particular, lower fractions of the failure signatures
are much more susceptible to noise than the higher ones. For
example, atα = 0.01, the average accuracy is only 60%,
while it reaches 90% atα = 0.16. This is because at smaller
fractions of the failure signature, there is a higher chance
that the spurious observations can morph the failure signature
of one shared risk into another. Since our algorithm tries to
identify risk groups with highest coverage first, it is possible
that the failure signature combined with noise will match a
candidate risk group other than the injected failure.

With structured noise (in Figure 5(b)), we observe a similar,
although less pronounced, phenomenon. The accuracy dips a
little compared to the case when there is no noise but is higher
than with random noise. The reason is as follows. Since noise
is more structured in this case, the resultant failure signature
is a composition ofα fraction of the original failure signature
andα×β fraction of the five noise links, whereβ is the ratio

of the failure durations of the noise and the original failure (β
= 5/60 in our simulations). Since even a smallα is enough to
achieve high accuracy for five simultaneous failures with no
noise, we achieve high accuracy for the structured noise case.

2) Precision of the localization algorithm:Along with the
accuracy, we also evaluated the precision of the localization
algorithm—the fraction of truth in the hypothesis—with vary-
ing signature fractionα. Without noise, the algorithm enjoys
extremely high precision, especially whenα > 0.16. Precision
drops with lower values ofα since the failure signature is
not strong enough to distinguish between multiple contending
risk groups. We also observe that the precision, similar to
accuracy, is higher for scenarios with one failure than those
with five. Lower accuracy implies that part of the ground truth
is not present in the hypothesis, which in turn means that the
hypothesis might contain additional candidates not part ofthe
ground truth (i.e., lower precision) to cover all observations,
thus leading to lower precision.

In the presence of noise, we only considered the injected
faults as part of the ground truth and not the noise itself. Thus
the localization precision is expected to be much lower as the
algorithm tries to cover all observations including those caused
by noise, which in turn leads to a larger hypothesis. We can
observe this trend for both the random (in Figure 5(c)) and
structured noise (in Figure 5(d)) scenarios. For the structured
noise, though, the precision is higher than that of random
noise; fewer risk groups are required to cover the small fraction
of structured noise introduced.

We also observe that the precision is higher for five failures
than one in both noisy scenarios, while the opposite is true
without noise. The reason for this is straightforward: Since the
amount of added noise remains constant across the varying
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number of simultaneous failures, the number of spurious
observations and, therefore, the additional risk groups required
to cover them remains similar in all cases. The amount of truth,
however, increases linearly with the number of simultaneous
failures injected, thereby increasing the overall precision.

Fortunately, we can improve the precision without signif-
icantly decreasing the accuracy by applying the candidate
selection algorithm described in Section IV-C. In Figures 5(e)
and 5(f), we plot the accuracy and precision obtained after
applying the ABSOLUTE candidate selection algorithm for
different absolute thresholds. For this experiment, we fixed
the fraction of the failure signature to 0.16, still very low.

Eliminating candidate links from the hypothesis that were
less than the threshold improves precision significantly until
a threshold of about 25, after which the decrease in accuracy
out-weighs the additional benefit obtained by increasing the
threshold. The optimum threshold will vary depending on the
specifics of the topology and fault detection system and, should
be derived empirically for a given deployment.

3) Experience with real data:In addition to the simu-
lations, we also collected failure data from a section of a
real MPLS-switched tier-I ISP backbone network. The system
monitors MPLS tunnels that originate from a subset of edge
routers in the backbone, traversing the backbone and finally
terminating at other edge routers. Since the MPLS tunnels are
established and maintained using the underlying IP topology
(through OSPF), any IP-layer failure can impact the MPLS
tunnels above the IP layer. The topology consists of a few
hundred routers and the probes are transmitted at a periodic
rate of one every minute.

The goal of simulation is to stress-test our system; we
consider every probe loss as part of the failure signature,
including those due to noise. In the production version of the
tool, we are mainly interested in characterizing large failures,
thus noise can be reduced by considering only those OD-pairs
with more than a threshold number of dropped probes.

We compared our hypothesis with ground truth extracted
from three data sources: OSPF LSAs, syslogs and SNMP data.
During many routing events in the network, the topology is
unstable for a short period and probes can get dropped. For
such routing incidents, we compare the hypothesis generated
by our algorithm with LSAs corresponding to the routing
events. In the core backbone network, many IP links (known
as composite links [1]) are in fact, logical bundling of many
member interfaces, load-balanced by the router. Member in-
terface failures affect only the set of probes traversing that
interface after the failure and before the router load-balances
again between other members. Since the composite link is
active, such failures do not cause OSPF LSAs but appear in
router syslogs. In conditions of high link utilization, such as
during failures or during maintenance, links can experience
heavy packet loss, and therefore, can cause end-to-end probes
to get dropped along these links; such congestion events are
found in SNMP data.

Note that the ground truth obtained through these data sets is
only approximate, as there can be instances when a link failure
is reported in the ground truth (using LSAs, syslogs and SNMP
data) but the event does not impact traffic forwarding. In these

cases, the failure signature will not contain any OD-pairs that
are affected by the spurious LSA or syslog message. In such
cases, the natural comparison with our hypothesis (namely,
requiring that the ground truth be wholly contained in the
hypothesis) is obviously unfair. As a relaxation from this strict
accuracy metric (which we refer to as ALL), we define a more
conservative accuracy metric called ATLEASTONE in which
accuracy is defined to be 1 if at least one of the links in the
ground truth is contained in the hypothesis and 0 otherwise.

a) Candidate selection algorithm:In Figures 6(a)
and 6(b), we plot accuracy using both the ALL and
ATLEAST ONE metrics and precision of localization. For
this experiment, we picked the hypothesis with best accuracy
among those with different topology snapshots. On the x-axis,
we vary the cardinality of the failure signature (number of
observations) from 50 all the way up to 1000 observations
in steps of 50. On the y-axis, the average accuracy/precision
corresponding to all failure intervals that have at least x
observations is shown. In effect, these figures show the trend
in the accuracy/precision as the failures impact more and more
OD-pairs.

Several conclusions can be drawn. First, the number of
failure intervals reduces exponentially from about 600 bins
with more than 50 observations to about 20 bins with more
than 1000 observations (not shown). This is expected, since
the number of large failures is typically much smaller than the
number of small failures. Overall, we obtained accuracy and
precision of about 80% when considering failures with more
than 150 observations. Second, the accuracy and precision of
localization increase as the failure size increases initially from
50 to 150 observations. However, it decreases slightly after
that but is inconclusive as the number of failure intervals is too
small to have statistical significance. Larger failure signatures
can indicate one of three things, assuming noise in the network
remains the same across all failures. First, the fraction of
the failure signature captured could be higher, i.e., the failure
lasted for a larger duration. Second, the failure might haveaf-
fected many OD-pairs in the network, thus the failure occurred
on a popular link that lies on many paths. Finally, there could
have been many simultaneous failures, the likelihood of which
is not insignificant due to router maintenance events. For the
first two cases, it is not surprising that our fault localization
algorithm performs well, as larger signature fraction means
larger accuracy verified using simulations. For the final case,
since we use the ATLEASTONE metric, there is a strong
chance that at least one of the root causes is in our hypothesis.
In fact, accuracy using ALL metric is about 40% less than the
ATLEAST ONE metric, both due to the approximate nature of
our ground truth as well as the presence of many simultaneous
failures in ground truth.

Third, an ABSOLUTE threshold of 30 that selects candidate
links in the hypothesis that cover at least 30 observations
seems to represent a good trade-off between accuracy and
precision. Below this threshold, the precision is significantly
lower while accuracy is only slightly higher. Increasing the
candidate selection threshold beyond 30 leads to a marginal
decrease in the average accuracy, while precision does not
improve any further.
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is known.
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(c) Precision as a function of ABSOLUTE thresh-
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and using the UNION heuristic (below).

Fig. 6. Accuracy and precision for the MAXCOVERAGE algorithm on real failures from a tier-1 ISP. The first two graphs assume the correct topology
snapshot is known, while the third shows the decrease in precision due to the UNION algorithm that considers the supersetof the hypotheses obtained using
all the topology snapshots during the 15-minute bin.

b) Hypothesis selection algorithm:In Figure 6(c), we
plot the precision for the UNION hypothesis selection al-
gorithm that combines multiple hypotheses obtained using
different topology snapshots. The x-axis is the ABSOLUTE
candidate selection threshold that we vary from 10 all the way
up to 500. For each of these candidate selection thresholds,
we identify all those failure intervals that had at least one
candidate link remaining in the hypothesis after we apply
the candidate selection thresholds and compute the average
accuracy/precision for these failure intervals. The number of
bins reduces with increasing candidate selection threshold (not
shown in the figure) due to the fact that we discard bins that do
not have any candidates left in the hypothesis after we apply
the threshold.

From Figure 6(c), we can observe that UNION performs
similarly to an oracle that can clairvoyantly pick the best
out of all the hypotheses generated using different topology
snapshots. Because UNION includes the links from in all the
hypotheses, it cannot decrease in accuracy according to our
definition. As shown by the upper two lines of Figure 6(c),
however, precision reduces by a small amount overall. Because
the network topology does not change during many of the 15-
minute bins containing failures, however, Figure 6(c) under
reports the impact of not knowing the correct topology. If we
consider only the bins that had a change in topology (where
UNION has some effect) precision drops about 15%, as shown
in bottom two lines of Figure 6(c).

c) Real MPLS black holes:We describe three silent
failures we analyzed using our system. In the first incident,
misbehavior of a new device that was connected to the
periphery of the network caused many routes to go through
the device that were then subsequently black-holed. This isa
perfect example where we need to consider all the topology
changes within a failure interval. In this case, our localization
system outputted two candidate links as the hypothesis—the
(properly functioning) link before and the (black hole) link
after the re-routing of traffic. For this incident, the localization
accuracy therefore is 100% while precision is only 50%.

In another failure scenario, the forwarding component of
a line card failed to dequeue packets until the card was
reset. Our localization system output a hypothesis that had
five candidate links, out of which, when we applied our

ABSOLUTE threshold of 30 eliminated the four false positives
out of the hypothesis and contained only the actual failed link.
This hypothesis therefore has 100% accuracy and precision.

Another known black hole scenario happened due to a mis-
configuration causing brief loss in connectivity to MPLS paths
that traversed that link. Our localization algorithm output a
hypothesis that contained four candidate links, two of which
were eliminated after we applied our candidate selection
algorithm. Out of the remaining two, one was the actual black
hole while the other was a false positive. However, the false
positive could not be easily distinguished from the actual
black hole since both these links appeared on all the paths
corresponding to the affected OD-pairs.

VI. D ISCUSSION

In this section, we discuss some of the main lessons learnt
and other insights we obtained during our experience.

Not all failures are difficult to localize manually; sometimes,
visual inspection may be sufficient. For example, when all
failed MPLS tunnels share one end-point, it is easy to iso-
late the root cause. If the fault lies in the core, however,
visual inspection alone is not sufficient as it may require
few hours to localize; our system is most appropriate for
such situations. Our system is based on passive inference, but
one could conceive an ‘active diagnosis’ mechanism where
targeted probes are issued to isolate the failure. The huge
administrative overhead (e.g., obtaining per-link measurements
is harder compared to end-to-end probes inPATH FAULT) often
hinders creating such an active diagnosis framework, however.

Risk model construction is perhaps the most important step
of our methodology; it originates from extensive understanding
of the failure scenarios. For example, inPATH FAULT, we
observed failures are due to topology changes. Thus, our risk
model consisted of IP links and not optical layer equipment
such as optical amplifiers, and fibers. It is also important
to ensure consistency between the risk model and the cor-
responding failure detection system. For example, in thePATH

FAULT, there is no need to model customer facing links in the
topology, as the probes never traverse any of those links.

Constructing the right risk model is not easy, even if the
category of risks to be modeled was known. For example, in
an OSPF network, multiple paths can exist between a given
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source and a destination if the paths share the same cost
(ECMP [14]), in which case traffic is split based on a hash
function applied on source-destination IP addresses. However,
probes measure only one among these multiple paths and it
is difficult to know which one they measure. Similarly, in
composite links[1], many optical circuits are bundled together
into one logical IP link and router splits traffic according to
a hash function. Partial failures involving one member circuit
can result in the loss of some probes. In these cases, the risk
model needs to be constructed based on the instantaneous path
traversed by the probe. Since this is difficult, we consider the
union of all potential paths, which is not accurate.

It is often not enough to just model the risks once; de-
termining the right risks to model is a continuous process
in many cases. For example, inLINK FAULT , modeling an
OSPF area as a shared risk was not enough. A failure we
observed involved only 70% of the OSPF area, which we could
detect using the error threshold. Upon further investigation, we
needed to introduce a new risk—an OSPF area with MPLS
enabled in order to capture this failure. Risk models are also
almost always dynamic; the rate at which a given risk model
exhibits churn varies depending on the problem. Because of
this churn, there could be differences between the risk model
and reality that may affect localization. Using error thresholds
helps mitigate the problem to some extent.

VII. R ELATED WORK

Monitoring and management is a challenging problem for
any large network. It is not surprising, then, that a number of
research prototypes (e.g., [5], [8], [13], [20], [24], [26]) and
commercial products such as NetFACT [15], OpenView [16],
IMPACT [17], EXCpert [24], and SMARTS [30] have been de-
veloped to provide powerful, generic frameworks for handling
fault indicators, particularly diverse SNMP-based [4] mea-
surements and rule-based correlation capabilities. However,
their reliance on the inherent monitoring capabilities in the
network elements restricts the types of failures these systems
can localize. Our systems complement these solutions for the
particular problem scenarios described in the paper.

Much of the existing fault-localization literature focuses on
generic techniques which have been validated predominantly
against simulated data; in this paper, we validate our approach
using real failure data from an operational tier-1 ISP network.
Our risk-modeling approach follows other approaches studied
in the literature that employ dependency graphs for fault local-
ization (see [33] and references therein for a comprehensive
survey of such approaches). In many such graphs, dependen-
cies can even be probabilistic in nature, which require statisti-
cal inference mechanisms such as Bayesian inference [31] or
belief propagation techniques [25], [34]. Unfortunately,these
approaches do not typically scale beyond a few nodes (less
than 50) in the dependency graphs [25].

One critical component in applying the risk-modeling ap-
proach in theLINK FAULT scenario is the construction of
SRLGs. Network engineers routinely employ the concept of
SRLGs to provision disjoint paths in optical networks, as input
into many traffic-engineering mechanisms, and in protocols

such as Generalized Multi-Protocol Label Switching (GM-
PLS). Due to their importance, previous work has attempted
to automatically infer SRLGs [28] in the optical domain. To
the best of our knowledge, however, we are the first to use
SRLGs in combination with higher-layer fault notificationsto
isolate failures in the optical hardware of a network backbone
without the need for physical-layer monitoring.

PATH FAULT problem falls into a general class of inference
problems that includes traffic matrix estimation [40], tomog-
raphy [3], [11], [21], [23], [35], [36], [39], and many others.
Hence, techniques applied in these domains could potentially
apply. Moreover, the problem of fault isolation is not limited
to networking; similar problems exist in any complex system.
Regardless of domain, fault detection systems have taken three
basic approaches: rule- or model-based reasoning [2], [10],
[16], codebook approaches [30], [38], or machine learning
(such as Bayesian and belief networks [7], [37], [32]). The
difficulty with probabilistic or machine-learning approaches
is that they are not prescriptive: it is not clear what sets
of scenarios they can handle besides the specific training
data. Rule-based and codebook systems (otherwise known
as “expert systems”) are often even more specific, only be-
ing able to diagnose events that are explicitly programmed.
Model-based approaches are more general, but require detailed
information about the system under test. Dependency-based
systems like ours, on the other hand, allow general inference
without requiring undue specificity.

VIII. C ONCLUSIONS

In this paper, we developed and evaluated a simple yet
effective methodology for localization of faults in the network.
Our approach based on risk models localizes faults even in
the absence of any network-generated alarms, either because
they were not available or because the failures were silent
in nature, thus aiding network operators in troubleshooting
failures even when conventional monitoring fails. While we
discuss two specific scenarios in this paper, there may be many
other scenarios where our methodology is directly applicable
that are yet to be explored. Our extensive evaluation based
on both controlled simulation and actual failure data obtained
through real-world deployment in a tier-1 ISP, indicates spatial
correlation can obtain high localization accuracy and precision
in many failure scenarios. In particular, our experience has
shown that the full power of statistical models may not be
needed in practice: our greedy approximation suffices for the
problem scenarios we consider.
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