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Abstract— Internet backbone networks are under constant automatic recovery actions such as re-routing packetsigffiro
flux in order to keep up with demand and offer new features. other functional paths. In other cases, the alerts arertrities]
The pace of change in technology often outstrips the pace of 44 semj-automatic fault management systems [16], whidistass

introduction of associated fault monitoring capabilities that are . . .
built into today’s IP protocols and routers. Moreover, some a human operator in troubleshooting the failure. The chghe

of these new technologies cross networking layers, raisingie N diagnosing many problems is that alarms indicate only tha
potential for unanticipated interactions and service disuptions, a network element observed a deviation from normal behavior
which the individual layers’ built-in monitoring capabili ties may (e.g., link failure or probe packet loss); the actual fawitiid

not detect. In these instances, operators typically emplokigher- lie anywhere in the network (e.g., at a downstream router or

layer monitoring techniques such as end-to-end liveness pbing tical lfi In oth ds. the el t that i
to detect lower- or cross-layer failures, but lack tools to pecisely optical amplifier). In other words, the element that issues a

determine where a detected failure may have occurred. In tis  alertis not necessarily the cause of the failure. Moredaalts
paper, we evaluate the effectiveness of using risk modeling in lower layers are frequently first reported by monitoring
translate high-level failure notifications into lower-layer root systems at a higher layer. Hence, cross-layer associadi@ns
causes in two specific scenarios in a tier-1 ISP. We show that acritical for accurate localization.

simple greedy heuristic works with accuracy exceeding 80%of In thi ider the effecti f t ted
many failure scenarios in simulation, while delivering extemely n this paper, we consiaer the elfectiveness or an automate

high precision (greater than 80%). We report our operationd fault localization framework based oisk mOdeIingO |dent|fy
experience using risk modeling to isolate optical componérand possible network failure locations given a set of poteltial

MPLS control-plane failures in an ISP backbone. related alarms. At a high level, risk modeling involves miagp
the dependency relationships between observable evedts an
|. INTRODUCTION potential causes. For example, a single fiber cut can simulta

Lo neously affect multiple IP links that are carried over thefib
PERATIONAL. backbpne networks are |ntr|_n5|cally ex therefore, the fiber represents a shared risk for all thenlisli
posed to a wide variety of faults and impairments. Th

. _ t%at traverse it.
netwqus are large, geographically distributed, and ‘.‘”“5‘ While we believe that the risk modeling framework itself
evolving with complex hardware and software artifacts. A

typical tier-1 backbone network consists of over a thousand” be generally applicable in ot.her scenarios, the camstru
. - tion of a complete and accurate risk model is often extremely
routers from different vendors, with disparate featurs,satt-

L . . . challenging, and in some cases may not even be possible.
ing in various roles in the network architecture, suppotigd ) S

. . . Thus, we study the performance of risk modeling in the cantex
access and core optical transport networks involving muaa t

two orders of magnitude more network elements. Backbonea restricted class of faults for which we can indeed caicstr

. . ractical risk models. In particular, we apply risk modglio
networks are layered in an attempt to help contain complex o ; o
I ' L : wo distinct problems—Ilink and path fault localization-ath
within simple well-defined abstractions; in practice, hoer

. . . I, : have been observed in practice in ISP backbone networks. In
layering often gives rise to additional, complex failuredas . ; .
. 2 : . each instance, we collect failure signatures from a faukde
involving interactions between the different layers. . . .
. . e . tion system deployed in a tier-1 ISP and construct a topelogy
A large fraction of any tier-1 provider's time is spent . : .
pendent risk model. The signatures and risk models are

coping with operational failures. The essential problem . o 4
fault managementis to detect, localize, mitigate and w@itety her?e'snpgr:é?na It%CZ“sZ:ttlg? Iﬁ(lglo r':gmt;hi?]t t?]lg%lgfwirkypetb
correct any condition that degrades network performance. qorresp g . vy : .
e LINK FAULT : In the first scenario we study, an IP network is
assist in fault management, many network elements (such as . . S . o
. . . - constructed with point-to-point links (optical circuitsgtween
routers) are designed to continuously monitor certain biens. . : .
; s : . dflfferent routers on top of an underlying optical topology.
(e.g., link connectivity) and raise an alarm in the event . . . " e
n(;;nltorlng alarms associated with optical circuit failarare

failure. In some cases, the network element can even perfg L .
typically generated on an individual basis—for example, a
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network, where MPLS labels are established between two edge
routers along the shortest path identified by the underlying =
interior gateway protocol (IGP) such as OSPF or IS-IS. Sucl
an architecture is currently used by many tier-1 ISP netaiork
One commonly observed failure scenario occurs when OSPF 7 . g 8 . .
re-routes due to a change in IGP link weight, but MPLS does
not update its label-switched paths accordingly. Theesfor
all the packets belonging to that particular MPLS tunne]
attempt to traverse the old path only to be dropped within
the network. Another common reason for such black holegresorocer o °
involves configuration or operator error [9]. For exampld® IP-optical topology for LNk (b) MPLS topology forPATH FAULT
a human may forget to enable MPLS on a newly addéd”’
interface causing MPLS-switched packets to be droppedFa 1. Example of SRLGs for the two example failure scersadonsidered
that interface. in the paper.

In each scenario, we evaluate the efficacy of a greedy
localization heuristic using real failure data and risk risd o ) ]
constructed from monitoring systems deployed on a tie'foc_|at|ons are easily constructed. Of course,_the faulfmot
1 backbone network. Our results show that a simple riskations themselves are generated by the various devices and
modeling approach can deliver useful results even with irfomponents distributed throughout the network. Within the
perfect dependency models and inaccurate failure datalewHiéntralized location, however, several (possibly indejeer)
researchers have previously proposed sophisticatedizacal fault localization systems, each of which is customized to a
tion algorithms based on Bayesian inference [31] and beligf€cific category of faults, often exist. The specializetlirea
propagation [34], we demonstrate that greedy heuristies &f these tools is qlue; primarily to the existence ofaW|deelgr|.
both reasonably accurate (over 80% in our evaluation) affi faults both within as well as across layers, thus making
robust to the noise and errors found in real alarm and depdndifficult to create one integrated platform for all types o
dency data. The system described here is now in operatiof@!ts. For example, inINK andPATH FAULTS, the root causes
use at a tier-1 provider. are optical component and IP interface failures, respelgtiv

The remainder of this paper is organized as follows. We€ating a unified heterogeneous system would not only be
introduce the risk-modeling approach, localization ailions difficult put in fact unnecessary. In this paper, ther.efore,
and system architecture in Sections II, 1Il, and IV respetyi W€ consider the two problemseiK and PATH FAULTS—in
We then present simulation results and experience with ré¥lation, despite applying the same risk-modeling frammw
data for both the systems in Section V We present a brief dis-Shared risks irLINK FAULT : We construct a model of risks
cussion on insights that we have learnt through our expegiethat represent the set of IP links that are likely to be aéféct

in SectionVI. Finally, we present related work in Sectioni VIPY the failure of each component within the network. The
before concluding in Section VIII. basic IP network topology can be represented as a set of

nodes interconnected via links. Inter-domain and intrendio
routing protocols such as OSPF and BGP operate with a basic
abstraction of a point-to-point link between two routersese
The key idea for localization of the two failure scenariofP links in turn are overlaid on top of an underlying optical
mentioned earlier is shared risk analysis. Roughly spegakin network. Despite appearing logically disparate, multiffe
physical object such as a fiber or an optical amplifier reprisselinks can share components in the optical network, thusigad
a shared riskfor a group of logical entities at an upper layeto shared risks in the network.
such as the IP layer. That is, if the optical device fails or In many tier-1 backbone networks, each inter-office IP link
degrades, all of the IP components that rely upon that objéstcarried on an optical circuit (typically using SONET).igh
fail or degrade. Similarly, a link between two routers camfo optical circuit in turn consists of a series of one or more
a shared risk for multiple MPLS tunnels (or end-to-end pathfibers, optical amplifiers, SONET rings, intelligent optica
that pass through that link. In the literature, such assiotia mesh networks and/or Dense Wavelength Division Multiplex-
are referred to aShared Risk Link Groupsr SRLGs [6]. This ing (DWDM) systems [27]. These systems consist of network
concept is well understood in the context of network plagnirelements that provide O-E-O (optical to electrical to cgi)ic
where backup paths are chosen such that they do not hawaversion and, in the case of SONET rings or mesh optical
any SRLGs in common with the primary path, and sufficiemetworks, protection/restoration to recover from opticgler
capacity is planned to survive SRLG failures. The applarati failures. Multiple optical fibers are then carried in a singl
of risk group models to real-time and offline fault analysis;onduit, commonly known as a fiber span. Typically, each
however, has yet to be explored. optical component may carry multiple IP links—the failure
In typical failure scenarios, network operators often iegju of a single physical component results in the failure of all
an accurate cross-layer view of the network to localize trod these IP links. Therefore, physical elements such assfiber
root cause. Thus, in many ISPs, fault localization is penfeat  fiber spans, and optical components constitute shared. risks
at a centralized location where the required cross layer ds-addition to the optical components, our SRLG model also

FIBER SPAN

FIBER SPAN 5

Il. SHARED RISK ANALYSIS
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includes routers (a shared risk for the set of links origimat
at the router), modules (common to the set of links connected
to a particular module within a router) and ports (relied mpo
by the interfaces themselves). We also extend beyond mlysic
components and include logical software entities such &3FOS
area, router software version, etc., in the list of SRLGs.
We illustrate this concept in Figure 1(a) with a simpleig 2  gipartite graph modeling of the failure localizatiproblem as done
network consisting of five nodes connected via seven l0giGalSCORE system.
IP links (circuits CKT 1 through 7 shown in upper half of
Figure 1(a)). These IP links are routed over shared optical
layer components shown in the bottom half of Figure 1(ajymptoms observed due to a given failure. The symptoms
These shared risks in the optical layer are denoted as FIBERMselves are typically detected through explicit momtp
SPAN 1 to 6, DWDM 1 and 2. CKT3 and CKT5 are botHeither through probes or lower-layer alarms). For exaiple
routed over FIBER SPAN 4 and thus would both fail wittorder to check IP link integrity, each router in the network
the failure of FIBER SPAN 4. Similarly DWDM 1 is sharedinjects periodic “HELLO” messages to the router at the other
between CKT 1, 3, 4 and 5, while CKT 6 and CKT 7 sharend, which then acknowledges the receipt of the message [22]
DWDM 2. We consider the set of IP link failures that are temporally
Shared risks irPATH FAULT: In this problem, MPLS tunnels correlated (occur almost simultaneously) to constitute th
share individual IP links and hence form the shared riskshEz&failure signature in this scenario. Similarly, in monitugi
individual link failure or degradation can simultaneousfifect MPLS tunnels for black holes, a monitoring server typically
all the MPLS tunnels that ride through that particular lifk. establishes connections (using, say, GRE tunnels [12]) wit
fact, extending it a bit further, if there are multiple VPN<ach edge router and injects periodic probes to every other
that ride through a given MPLS tunnel that rides through edge router in the network and reports if any of the probes
failed link, all these VPNs are affected by a failure on thare lost. Therefore, the set of origin/destination pair®{O
link. However, for the purposes of this paper, we focus on thirs) that have lost connectivity (based on dropped pjobes
failure of MPLS tunnels, while noting that we can extend thigonstitutes the failure signature in this scenario.
arbitrarily into higher layers if need be. The other input required for fault localization is the risk
For example, in Figure 1(b), edge nodes A through E amodel. We use a bipartite graph to represent the dependency
connected via intermediate nodes F through H. Clearly, frobpetween possible observable symptoms and corresponding
the figure, we can observe that the set of paths A-F-G-B, A-likely causes as shown in Figure 2. An edge exists between a
G-C, E-F-G-C, E-F-G-B (and the corresponding reverse pattgymptom and a likely cause if that symptom can be observed
share a common link—the link from F to G. Hence this linlgiven a failure in that root cause. As shown in Figure 2, the
F-G forms a shared risk for this group of paths. Note that wiep partition consists of the universal set of symptoms @& th
do not include all the optical components and other SRL@ailure signature, and the bottom partition consists oflitkedy
we model forLINK FAULT in this context as MPLS failures causes. We refer to the symptoms that have been reported by

LIKELY CAUSES

do not involve optical components. the failure detection system adservationsin LINK FAULT,
the symptoms are IP link failures and the likely root causes a
1. FAULT LOCALIZATION VIA RISK MODELING the SRLGs such as fiber spans, optical amplifiers, etc., while

. . . . .in PATH FAULT, observations are failed MPLS tunnels, while
The previous section describes two instances where a g|\{ﬁn

shared risk failure affects all the entities that are depend € underlying IP links make up the potential root causes.
upon it. Here, we use these risk models to develop a fault

localization methodology that can aid network operators @ Eault localization

troubleshooting failures in an automated fashion. Our aggn _ :
has three main components—failure detection and risk mod-onlci_ wef crfeatlet: lthesl_e r;sk m_lf)r?elsb we tr:_en aﬁ]m?t'al K
eling, the core localization algorithm, and a set of refinetae corrélationfor fault localization. 1he observations that make

to handle domain-specific imperfections. Failures detbate up the faillure ;ignature are intersec_ted according to thie .ri
higher layer (such as failed IP links or MPLS tunnels) are fe{ﬁOdelhto |dent|f|ykc|ommo? she}redfrlskf‘. Tfh(.alse sh-ared r|s!<s
into a localization engine that spatially correlates tHadares orm the most likely explanation for the failure signature;

according to the risk model (based on the underlying togc)loghert]ﬁ;'1 thetlhoca}lllz:atlon eng:ne_outputs this set of Shalﬂk.* fl
to identify a small set of likely locations of the failure. sh 23 ypoInesISror exampre, in OUuLINK FAULT examp'e in

localization step is the primary reconnaissance to a finakl—a’ '9ure 1(a), if CKT1 and CKT4 both fail simultaneously, it is

often (necessarily) manual—step of actually diagnosirg tﬁg\?\zlij:i::_(ely that thh.e fgilu:]e wil lbe iﬂ thedopti;(:al compon:]a
root cause of the failure and fixing the problem. since this Is the only shared risk among these

circuits (or IP links). Similarly, in OUIPATH FAULT example

. ) ) . in Figure 1(b), if the set of paths A-F-G-B, A-F-G-C, E-F-

A. Failure detection and risk modeling G-C, E-F-G-B all fail in a given time interval (temporally
One of the two main inputs to a localization engine is theorrelated failures), spatial correlation leads to theydimk

failure signature The failure signature consists of a set ofhat is common to all these paths—the link from F to G. The



4 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.NO. , MONTH YEAR

Algorithm 1 GREEDY(FailureSignature F) routines since the metric of interest can change according t
1. E={} the particular problem at hand. In the next subsection, we
2: U= FailureSignature F; discuss suitable choices for the two problems we consider.

3: H={}; // Hypothesis set

4: while (U # {}) do C. Managing imperfections

5. for (observationo € U) do . . i
6 //All SRLGS for this observation o In practice, the effectiveness of the greedy approach is
7. srlgVector = getA11SRLGs (o); limited by noise and incompleteness in the failure sigreatur
8 //Update stats of SRLGs in srléStatVector and churn in the risk models. We explain how the algorithm
9 updateSrlgStats(srlgVector); can be adapted to accommodate these imperfections in this

10:  end for section. o . _

11:  srlgSet = identifyCandidates(); 1) Imperfections in failure signature and risk modeh

12: //Move observations covered by SRLGs in srlgSet most rgal networks,_ there is constant churn due to variquesty

13 //from U to E of routlng_, con_gest|0n, malntenanc_e and other r_ela_tedte.ven

14;  moveEvents(srlgSet,E,U); DL_Je to thIS noise, there could ls_npurlous observationis thg

15.  addToHypothesis(H, srlgSet); fallure_5|gnature that are not dlreptly related to t_he patar

16: end while real failures that we seek to localize, thus complicatingale

17: return H: ization. Besides noise, inherent inefficiencies in the cein

’ system or losses of failure notifications due to unreliable

transport mechanisms could lead to armomplete failure

signature The extent of both these imperfections varies based

localization engine would, therefore, return the singleset on the particular domain. As with the failure signature r¢he

{F-G} as the hypothesis in this failure scenario. are likely to be imperfections in the risk model as well. Tdes
In most situations, however, it is not as straightforward tgnperfections also stem from inherent churn in the network,

localize failure(s) as in the above toy examples. The laaali €ither due to out-dated databases or an inability to obtente

tion engine does not have access to an oracle to determigpendencies. Similar to the failure signature, the extént

whether a single failure, dual failure, or multiple failare these imperfections depends upon the particular failunezio

occurred in the network; it has to determine the cardinalitynder consideration. We explore both imperfections in the

of the set of failures based on the failure signature alorgontext of the two problem domains we consider belowx

For any given failure signature, there could be many differeFAULT suffers from relatively few imperfections, whileaTH

likely explanations. Exploring all the possibilities istei not FAULT has many more sources of noise.

feasible. Such enumeration is also likely to contain many LINK FAULT . The detection mechanism inNK FAULT uses

cases that are not typically observed in practice. We tbegef both lower-layer alarms (such as a loss-of-signal alarng) an

attempt to identify hypotheses that can explain a givemifail high-frequency, router-to-router probes (such as OSPHoHel

signature with the smallest set of failures. Our approa¢hessages) to detect losses in connectivity. Thereforectien

is in accordance with the principle of Occam’s razor, tha&f IP link-layer faults is typically complete, in the sensmt

suggests that the simplest explanation is most likely. treor all IP links that fail due to a problem in the underlying optic

to find the simplest explanation (the one that hypothesizestwork are detected with extremely high probability. A few

least number of failures), an obvious strategy is to find tHault messages are sporadically dropped during transonissi

minimum set cover for the bipartite graph. Each shared rislowever, leading to a slightly incomplete failure signatur

is associated with a set of observations according to tlke ris The optical topology from which the risk model is computed

model. While the general set-cover problem is NP-hard, tifemore or less stati¢c suggesting that the risk model would be

greedy approximation finds a solution guaranteed to be @asy to capture. In our experience, however, the risk maéolels

O(log n)-approximation to the optimal [18]. the large majority of optical networks are maintained tigtou
We use the core algorithm GREEDY (shown in A|gohuma!’1—enterec_i databases_ that may Qrift away from reality

rithm 1) to iteratively pick SRLGs that are the best accogdirPVer time leading to occa_S|or_1aI errors in the database.€Thes

to a metric that we define laterpdateSrigStats() computes €TOrs can affect the localization results and must theeete

this metric for all SRLGs anddenti fyCandidates() picks factored into the localization algorithm. _

the best SRLGs in the current iteration. It then prunes thePATH FAULT. The detection mechanism employedAATH

set of observations explained by these candidate SRLGs LT, on the other hand, consists primarily of end-to-end

moveEvents()) from the failure signature and repeats the prg2robes that operate at a much lower frequency. So, for many

cess until no more observations remain in the failure sigieat reasonable failures, the failure signature is not complefe

In the classic set-cover problem, the metric is the number #urse, if the failure persists, eventually all low freqagn

new observations covered by the candidate SRLG. In otH¥Pbes that go through the failure are bound to detect the

words, in each iteration, GREEDY just picks those SRLG@&ilure. But this means that we need to wait for a long time

that have the largest number of edges in the bipartite graph _ ,
Some optical networks perform lower layer re-routes to niagker layer

among those in the failure signature. For now, we delibyat@ailures, in which case, paths need to be dynamically coethuiVe ignore
abstract theidenti fyCandidates() and updateSrigStats() this detail for the purposes of this paper.
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until the failure signature is complete. Furthermore, lbsea the hit ratio is eliminated. Since the hit ratio is not reedir
the topology is large (on the order of a million paths), anthe updateSrigStats() routine does not need to compute
failure can affect a significant number of paths leading i as well. This algorithm, therefore, is applicable paTH
an overwhelming number of observations and a large failurauLT where we can compute the coverage ratios of all the
signature set. In order to operate in real time, the failu®RLGs but not the hit ratios.
signature must occasionally be down-sampled. Therefare, i 3) Additional refinementsWhile our relaxed selection met-
this domain, the failure signature is expected to be largaiigs allow the localization algorithm to adapt to variouseop
incomplete. In addition to the incomplete failure signatur ational realities, our localization architecture suppdtirther
noise can cause some probes to be dropped in the netwdoknain-specific refinements. In particular, the input to as
thusadding spurious observations to the failure signature. well as the output from the localization algorithms can be
The risk model inPATH FAULT for MPLS paths is primarily post-processed in order to better accommodate the needs of
derived from the underlying IP topology. IP topology ighe particular domain. For instance, we introduced an error
inherently subject to churn due to various routing chang#zeshold above to deal with the slight possibility of esror
caused during failures, congestion and maintenance tesivi the risk model forLINK FAULT ; the choice of error threshold,
Therefore, the risk model needs to be computed on-the-fipwever, is not immediately clear. Another problem is that t
for this scenario from the topology snapshots during thmutput may still contain several root causes, some of which
failure interval. Because the topology is extremely laigés exist because the algorithm is trying to explain each andyeve
often impractical to construct the entire risk model; thaltfa symptom that is input to the system. This situation arises
localization algorithm needs to be designed to operate avithfrequently in thePATH FAULT scenario; hence, we seek to
partial risk model. output only the most significant root causes by effectivaly d
2) Handling imperfections through relaxed metridst or- noising the hypothesis. Another problem specific to RhgH
der to handle these imperfections, we use two differentinsetr FAULT domain is the need to consider multiple risk-models as
to identify the candidate SRLGs in each iteration of the daghe fault can be result of either the old or new topologies. We
GREEDY algorithm. Let; correspond to théth shared risk describe refinements to address these issues in Section I1V-C
in the network andG;| be the total number of observations
that belong to the SRLG',. |G;NF| is the number of elements IV. SYSTEM ARCHITECTURE

EftGit.tha; ;ar:so belong td?’C;he;a'luée s:gna}[thure. W?j de:[Ene So far, we have described the three required ingredients for
it ratio of the groupG; as|G; N F|/|G]. In other words, the ¢, i |5 calization—a failure detection system, a risk mipde

hit ratio of a group is the fraction of elements in the 9rOUBKg the localization algorithm. In this section, we elal®ra

that arg p.ar;cjo]f. th(ej fange s?nagjre.. Tber\]/ erfage .rat|0(;f ‘:]‘ on how these components are instantiated to addressnke
groupG; is defined agG; N F|/|F|, i.e., the fraction of the _ o = 0\ i1 problems.

observation explained by a given risk group.
If we have access to the complete failure signature and )
an accurate risk model, we can exploit the fact that evefy Failure detection
failed shared risk would have all associated observations i The failure signature upon which spatial correlation is
the failure signature. In other words, the hit ratio for thapplied is obtained from various types of network monitgrin
failed shared risks should be 1, so an optimal algorithm doutlata sources depending on the particular failure scenario.
select SRLGs with the highest coverage among those with any case, we assume a monitoring system continuously
a hit ratio of 1. In theLINK FAULT, however, while we generates a raw event stream (as shown on the left in Figure 3)
potentially have access to the entire failure signaturerehd with associated timestamps. For link faults, we use router
model, they are likely to contain a relatively small numbesyslogs generated by the router when it detects a link to be
of errors. In order to account for these errors, we define tdewn. In contrast, path failure notifications are generated
SCORE algorithm [19] that considers SRLGs with a hit raticesponse to the loss of end-to-end probes that constanitly po
greater than a particular error threshold, which is geheratonnectivity between various origin-destination pairs.
slightly less than 1. We explain later in Section IV-C how we Data sources based on discrete asynchronous events, such
determine the error threshold in practice. Thus, in SCOREs router syslog messages, need talsteredto identify a
theupdateSrigStats() routine computes the hit and coveragéailure signature. Note that a failure can cause symptorais th
ratios, whileidenti fyCandidates() routine picks the SRLG appear slightly off in time either due to time-synchroniaat
with the highest coverage ratio among those with hit raterrors across various elements, or propagation delayseintev
greater than the threshold. recording. There are many different ways to cluster events.
On the other hand, if we do not have access to the entlreLINK FAULT, we use a clustering algorithm based on gaps
failure signature or associated risk model, we cannot caenpletween failure events. We consider the largest chain aftsve
a meaningful hit ratio for each and every SRLG in the firghat are spaced apart by a set threshold (called a quietd)erio
place. Therefore, in such situations, the greedy heurpétks as potentially correlated events. The intuition is that events
those SRLGs that have the highest coverage-ratio in eveéimat occur within a time period less than a given threshole (w
iteration to output the hypothesis. In the resulting aldon use 30 seconds in our system) can be attributed to the same
MAX-COVERAGE, the identifyCandidates() routine is failure. In contrast, foPATH FAULT, due to the presence of an
similar to that of SCORE algorithm, except the condition oaxcessive number of events attributable to noise in thear&tw
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Network | Syslogs clustering | eriodicall L error thresholds SCORE unction . Hypothesis
p Yy algorithm |
o | |MPLS Fault Localization (., coverace |
Event Failre | 11 dynamic i queTy algorithm Hypothesis| | Candidate || |
{:;_) Steam | | signawre | L _| computation | with different Selection [—>| Selection »J—ﬁ u ’;:J .
Lost f d b i A i 1 | h . ) i othesis
Pfsbes %ri;nringy | of failed paths | OPO0GY SNAPSTIONS | | max-coverace algorithm Algorithm | | P
Network b ;} algorithm !
FAILURE SIGNATURE | i RISK MODEL i | FAULT LOCALIZATION

Fig. 3. System flow diagram for IP and MPLS fault localizatiproblems.

a clustering scheme such as above results in clustering alLINK FAULT : Rather than fixing one particular error thresh-
events together into one cluster. Instead, we divide tinodd for the system, we query the SCORE algorithm with
into 15-minute bins. The particular choice of the bin sizeultiple error thresholds (reducing from 1.0 to say 0.5)
is somewhat arbitrary and can be tuned in accordance with obtain many different hypotheses as shown in Figure 3.
the typical duration of a failure event, required timelined The hypotheses obtained using different relaxations aga th
diagnosis, and amount of evidence that needs to be collectexhluated based on a cost function that depends on the error
threshold and the size of the hypothesis. We use the ratio
B. Risk model between the size of the hypothesis and the threshold as the
In the middle portion of Figure 3, we show how the riskcost, we seek to identify cases where a small relaxation in
model is constructed for the two different failure scema.riothe threshold (an error threshold of 0.9, say) can reduce

In LINK FAULT, the risk model is constructed from disparatgigniﬁcalntly the number of groups in the final hypothesis.
databases that ISPs typically maintain for different typés | PATH FAULT. We use .the MAX'C_:OVERAGE algorlthmfhat
shared risks. For example, optical layer shared-risks sschit€ratively selects the links covering the most observetim
the SONET components that particular IP links traverse afe failure signature. As noted before, there are two isates
extracted from databases populated from operational ajpti@€ed o address. First, there can be potentially many eifter
element management systems. Other risk groups Sucht%%o_logy_snapshots within a given falluremt_erval apd thesy
OSPF area, router modules, etc., are populated by perlt;dicé'on IS which topology to USE. To ad.dress.thls, we f|r§t gemera
polling configurations from the various network elementse T MUItiPle hypotheses for a given failure signature usingfz!
underlying databases track the network and therefore #xhipvailable topology snapshots in the failure interval, asé u
churn. We cope with database churn by regenerating riglbypothems selection algorithmalled UNION, that outputs
groups multiple times during the course of the day. the union of hypotheses generated with each of the available
For PATH FAULT, we construct the risk model dynamicallyi0P009y snapshots. By considering all possibilities réhes
from IP topology snapshots obtained through an OSPF mofR 10SS in accuracy compared to an oracle that knows the
tor [29]. Because a significant number of failures in the MpL&round-truth (and hence knows the right topology to pick),
domain are due to topology changes, we need to consider B Precision is slightly lower. _
topology snapshots both before and after the failure dépgnd Second, recall thqt the_locallzanon algorlthm adds _suspec
on the exact nature of the failure. Due to the dynamic natufgks to the hypothesis until the hypothesis completelyiaixs
of the risk model, we do not construct the entire topologg“ thg failed propes,_ including those observauons_ thagear
for every snapshot, but instead obtain only the paths fB6PM mherent noise in the n_etwork. To address this, we use
the OD-pairs in the failure signature. Since there could Kecandidate selection algorithnfcalled ABSOLUTE) that
multiple paths between a given OD-pair due to equal-cd§moves candidate links from the hypothesis that explauefe
multi-path routing [14], we place the OD-pair in the riskhan a threshold number of observations and thus focusgs onl
groups corresponding to all the links that lie on at least o/ the main links in the hypothesis.
shortest path between the OD-pair.

C. Localization algorithm D. Implementation

Finally, once the failure signature is obtained and the risk For both the systems, we implemented the main localization
model is constructed, we can perform fault localization adgorithms in C/C++ and the rest in Perl. We also implemented
shown in the right portion of Figure 3. We proposed corea Web-based user interface for both systems. The IP fault
algorithms for IP and MPLS fault localization in Section-Bl  localization system contains slightly more than 1,000diné
here, we discuss additional steps of processing requiredmpn C and about 2,500 lines of Perl code, while the MPLS fault
of the core algorithms for each of these systems as discusksmilization system consists of about 5,000 lines of C++ and
in Section 111-C.3. about 2,000 lines of Perl code.
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V. EVALUATION the number of physical components that an operator needs to

In this section we evaluate the performance of systems Wgnually inspect. Defin€; = {gi, giz, - - , gin } @s the set of
deployed to address both thevk andPATH FAULTS problems Shared risks that a symptor depends on. Let” denote the
in a tier-1 ISP backbone, using simulations as well as rd4ilure signature consisting of symptonfg;, ¢z, - -+, ¢jm }

network failure data. Before describing our results, wet fir@nd  be the best hypothesis fdr. Clearly, H is a subset
present our metrics of evaluation. of U = U, G, the union of all possible root causes. The

localization efficiency is given byH|/|U|.

A. Metrics for comparison

Ideally, we seek to evaluate the effectiveness of our 5—' Results forLINK FAULT

gorithms by comparing their output to the ground-truth for We begin by evaluating the accuracy of the SCORE al-
the failures, i.e., the real root causes. We define two pgimagorithm for IP fault localization within a controlled enwin-
metrics for comparing our hypothesis with the ground-truth ment by using emulated faults. We used an SRLG database
accuracy and precision. constructed from the network topology and configuratioradat
Accuracyis the fraction of elements in ground trufhalso of a tier-1 service provider's backbone. We injected vagyin
contained in the hypothesi$, or |GNH|/|G|. If G is a proper numbers of simultaneous faults and studied the efficacyeof th
subset ofH, then the accuracy is 1. Any false negatives-algorithm in the presence of database errors and lossy fault
i.e., excluding a failed component from the hypothesis-winotifications.
result in lower accuracy. This metric alone cannot capthee t 1) Algorithm accuracy:We simulated multiple simultane-
efficacy of the localization algorithm, however. For exampl ous failures by picking risk groups at random from the set
if we design an algorithm that always outputs where U  of all network risk groups, and inputing the union of all IP
is the universal set of elements, théhC U by definition, links that are associated with these risk groups to the SCORE
thus always leading to an accuracy of 1. Such an algorittmfgorithm. We evaluated the accuracy of the algorithm imter
obviously is not very useful in practice, however, due to itsf the fraction of faults correctly localized by the algabrit.
high false positive rate. As a baseline experiment (not shown), we measure the ac-
Therefore, we defin@recisionto quantify the size of the curacy of SCORE as a function of the number of simultaneous
hypothesis in relation to the ground truth. It is defined as tHiaults for different types of SRLGs (ports, modules, etthe
fraction of elements in the hypothesis that are also pres@acuracy of the algorithm on these data sets is greater than
in the ground-truth or|G N H|/|H|. In effect, precision 95% for all types of risk groups for fewer than five simulta-
captures the amount of truth in the hypothesis. For exampiegous failures. For failure scenarios involving only a king
a precision of 0.9 would imply that the 90% of the elemenf#er cut, router failure or module failure, which form the
in the hypothesis match the ground truth. Precision is ruglcommon case for hard failures, our simulation results mgic
inversely proportional to false-positive rate: 0.9 pramsisis the accuracy is near 100%. These high accuracy numbers are
equivalent to(1 — 0.9)/0.9 = 11% false positives. expected since there are no imperfections; SCORE outputs
Typically, most algorithms tend to trade one metric foa wrong hypothesis only when fault signatures from two
the other depending on how conservative or aggressive ttigferent faults combine to produce another fault’s signet
algorithm is. A conservative algorithm tends to include alvhich is typically rare.
the possibilities in order to achieve better accuracy while 2) Imperfect fault notificationsNext, we simulate imper-
losing precision, while an aggressive algorithm includelyo fections due to operational realities, such as the lossilofréa
the significant ones thus gaining precision while somewhattifications. We consider three parameters: the erroskiuie
sacrificing accuracy. Our goal is to ensure that both thessed in the SCORE algorithm, the number of simultaneous
metrics are within reasonable bounds. While false negativiailures, and the loss probability (which represents the pe
and false positives can also be chosen in place of accuracy aentage of IP link failure notifications lost for a given tai
precision, we chose them since they represent the usabilityscenario).
our system more intuitively. Figures 4(a) and 4(b) demonstrate the accuracy of the algo-
While precision provides one metric of conciseness, it iithm under a range of loss probabilities for different niarsh
often difficult to interpret given the vast difference in thige of simultaneous failures and error thresholds. Specijiceie
of the true fault set (often one or two components) and tligures plot the percentage of correct hypotheses as a @umcti
entire network of components. Hence, we also quantify tloé the error probability. In Figure 4(a) the algorithm error
ability of our system to identify a small set of candidatelfau threshold is fixed at 0.6 and the number of simultaneous
using a metric we callocalization efficiency Localization failures is varied from 1 to 5. In Figure 4(b), the algorithm
efficiency is defined as the ratio of the number of suspeetror threshold is varied from 0.6 to 1.0, while the number of
root-causesfter localization to the numbebefore In other simultaneous failures is set to 3. As expected, increasieg t
words, it is the fraction of root causes that are identifieldss probability reduces the accuracy of the algorithm. é#nd
by our localization algorithm that likely explains a padiiar three simultaneous failure events and an error probalufity
fault out of all the root causes that could cause a givéhl, we can observe from Figure 4(b) that an algorithm error
fault. This metric is particularly useful in the contextiafik  threshold between 0.7 and 0.8 restores the accuracy of the
FAULT since it quantifies the ability of our tool to reduceSCORE algorithm to around 90%. However, if we mandate
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Fig. 4. The sub-plot (a) shows the accuracy of the SCORE ittigorwith a fixed error threshold of 0.6 with a varying numbérsamultaneous failures
as a function of observation loss. Sub-plot (b) illustrates impact of different error thresholds. Sub-plot (c) skdie localization efficiency defined in
Section V-B.3.b over 3000 real failure events.

perfect matching of failure observations to SRLGs (i.etger links. With a threshold of 1.0 our algorithm identified eight
threshold = 1.0), then our accuracy in isolating our faultpdr  different SRLGs as being involved in the hypothesis. Howeve
to around 78%. This shows the necessity and effectivenessasf the threshold was reduced to 0.9, the hypothesis size
the error thresholds introduced into the algorithm for fauteduced to only two SRLGs, one of them being the actual
localization in the face of noisy event observation data.  failed optical amplifier. Further reductions in this threkh

3) Experience with real failure dataThe LINK FAULT sys- did not reduce the number of SRLGs in the hypothesis. Upon
tem has been operating in a tier-1 backbone network iivestigation, we found that our SONET database was missing
an off-line fashion to localize IP link failures reported inone of the IP links in the failure signature. Thus, the SCORE
the network for more than a year. The implemented Syste'ﬂgorithm was unable to attribute this particular IP link to
operates on a range of fault and performance data, includih§ SONET SRLG, and instead incorrectly concluded that a
IP fault notifications and optical-layer performance measu router port was also involved (the second SRLG) to explain
However, we limit our discussion here to our experience withis individual link. The remaining 12 IP links, however, ree
link failure events. successfully attributed to the failed optical amplifier.isTh

a) Manual analysis of real failures: Determining example illustrates wh_y lowering the threshold is required

whether or not the system correctly localized a given fadifnen there are errors in the database.
requires identification of the root cause of the fault viaeoth ~ The other three SONET failures were all correctly isolated
means. In many cases, identifying this root cause involvtssthe SRLG containing the failed network element; in two
sifting through large amounts of data and reports that gases we again had to lower the threshold used within the
potentially tedious. We therefore selected a set of 18 gauglgorithm to account for links for which we had no failure
for which we identified the root cause of the problem an@otification. In one of these cases, the missing link was
compared with the hypothesis output by the system. indeed a result of the interface having been operationally s

Overall, we were able to verify manually that scoRglown shortly before the failure. Our topology snapshots are
successfully localized all of the 18 faults studied to thieth 9enerated on a daily basis; therefore the topology change wa
network elements (shown in Table 1). However, when weot reflected in the risk model. These examples clearly atdic
used a threshold of 1.0 (i.e., mandated that an SRLG canthe need to deal with operational issues such as incorréat da
identified if and only if faults were observed on all corresge and erroneous databases.
ing IP links), we were typically unsuccessful—particwarl On another previously identified failure scenario affedigd
for router failures, and for the protocol bug reported. Ian SRLG database error (fiber A in Table I), the system was
the majority of the router failures, even though these eventnable to identify a single SRLG as being the culprit even as
corresponded to routers being rebooted, the remote endshsf threshold was lowered, because no SRLG in the database
the links terminating on these routers did not always repaontained all of the circuits reporting the fault. So again,
associated link-level events. This may be due to a numberdsftabase error was highlighted by the system’s inability to
possible scenarios—the events may never have been loggettelate the failure to a single SRLG.
in the syslogs, data may have been lost from the syslogs, therhe final case that we evaluated was one in which a low-
links may have been operationally shut down and, hence, déglel protocol implementation problem (software bug) etiéel
not fail at this point in time, or the links were not affectech number of links within a common OSPF area. This scenario
by the reboot. Independent of why the link notifications wereccurred over an extended period of time, during which three
not always observed, the router failures were all succgsfuother independent failures were simultaneously obseraed i
localized when the threshold was marginally reduced. Thigher areas. When a threshold of 1.0 was used in the SCORE
highlights the importance of the threshold concept in thgigorithm, the event in question was identified as being the
SCORE algorithm to localize faults in operational networksresult of 20 independent SRLG failures—a large number

We studied four SONET network element failures. Theven for the extended period of time. As the threshold was
first—an optical amplifier failure—induced faults on 13 IReduced to a final value of 0.7, the event was isolated to
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Type of Component #SRLGS | Final Thid #SRLGS #Correct | Comment
problem Name (Thld.=1.0) (Thid.=Final) | localized
ROUTER
Router Router A 27 0.8 1 1 No event reported by some links
Router Router B 20 0.9 3 3 No event reported by some links
Router Router C 12 0.7 1 1 No event reported by some links
Router Router D 1 1 1 1 -
Router Router E 18 0.8 1 1 No event reported by some links
Router Router F 1 1 1 1 -
Router Router G 4 1 4 4 One router and three links failed
MODULE
Module Module A 1 1 1 1 -
Module Module B 1 1 1 1 -
Module Module C 1 1 1 1 -
SONET
OA Sonet A 8 0.9 2 1 No observation reported by one link and
database problem
Failed Sonet B 1 1 1 1 -
Transceiver
Short term Sonet C 2 0.7 1 1 No observation reported by one link
Flap
OA Sonet D 2 0.6 1 1 No observation reported by one link
FIBER
Fiber Cut Fiber A 3 0.5 1 1 Database problem
Fiber Span Fiber Span A 1 1 1 1 -
PROTOCOL
Protocol Bug | OSPF Area A 20 0.7 4 4 Incorrect SRLG modelling
Protocol Bug | OSPF Area A 4 1 4 4 OSPF Area A MPLS enabled interfacgs
TABLE |

SUMMARY OF 18 ACTUAL, DIAGNOSED FAILURES IN ATIER-1 ISP.

four individual SRLGs: three SRLGs in other OSPF areax a system based on MAX-COVERAGE to address phgeH
(corresponding to the independent failures) and the OS®4& aFAULT scenario.

in question. Thus, the SCORE algorithm was correctly ablewe built a simulator that can inject artificial failures that
to identify that the event corresponded to a common OSHfimic real-life failure scenarios, obtain observationsree
area. However, further investigation uncovered that tkeee sponding to the failure, and then apply localization altoni

why not all links in the OSPF area were affected was thes evaluate the accuracy. As described earlier, the eraieré
only those interfaces that were currently MPLS-enabledewesignature is generally not available for fault localizatio

affected. Thus, an additional SRLG was added to our SRLfherefore, for these simulations, we vary the fraction @ th
database that incorporated the links in a given area tha Wegilure signature and compare the accuracy and precision of
MPLS-enabled; application of this enhanced SRLG databage localization algorithm. The fraction of the signaturds
successfully localized all of the SRLGs affected by the foufirectly related to the duration of the failure and the rate a
simultaneous failures with a threshold of 1.0. which probes are issued. We simulate a fault detection isyste
b) Localization efficiencyFigure 4(c) shows the cumula-that issues periodic probes from every router at a rate of one
tive distribution function of the localization efficiencglieved per minute. Therefore, any persistent failure that lastsemo
by our system on 3,000 faults experienced in a tier-1 ISP. Othian a minute should be captured completely by the mongorin
system appears able to localize faults to less than 5% foe mgystem.
than 40% of the failures and to less than 10% for more thanFor our simulations, we use the same tier-1 network topo|_
80% of the failures. This Clearly demonstrates that the Seo%gy for which we present experiences with real failure data
algorithm can efficiently ferret out likely causes from obade |ater in Section V-C.3. We simulate three different scevsari
set of possible causes for a given failure. Unfortunatele dwithout any noise, with random noise, and with structured
to the extensive manual labor involved in diagnosing fair noise. The scenarios without any noise, while unrealistic,
we do not know the true cause of all 3,000 failures and canrfdtermine an upper bound on the accuracy of the a_|gorithm_
measure accuracy on this dataset. Random noise simulates failure scenarios where the failure
signature is mixed with spurious probe losses in the network
often due to transient congestion. In our simulations, wiedd
a random number of spurious observations with an average of
Similar to the previous subsection, we use both simulati@® per failure. Structured noise, on the other hand, models
and offline analysis of real failure data to evaluate theitgbil scenarios where failures of short duration overlap with the

C. Evaluation results foPATH FAULT
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Fig. 5. Figure shows the accuracy and precision of MAX-COYEE for different numbers of simultaneous failures and whamdom and structured noise
events are injected along with the actual failure. The wasithe average accuracy/precision measured over 500 mafidk failure scenarios, while the
x-axis is the fraction of the failure signature. The last tgraphs show accuracy and precision after applying the dateiselection algorithm to the output
of MAX-COVERAGE for random noise events. For these two gsphe fixed the signature fraction to 0.16.

main failure(s) and appear as noise. As an arbitrary startiof the failure durations of the noise and the original fal(s
point, we fail 5 links at random for 5 seconds; the simulated 5/60 in our simulations). Since even a smalis enough to
“real” faults last for 60 seconds. achieve high accuracy for five simultaneous failures with no
1) Accuracy of the localization algorithmWe measured noise, we achieve high accuracy for the structured noise. cas
the average accuracy as a function of the fraction of sigeatu 2) Precision of the localization algorithmAlong with the
« for varying number of simultaneous failures and for thaccuracy, we also evaluated the precision of the locatinati
three different types of failure scenarios. In simulatiovith  algorithm—the fraction of truth in the hypothesis—with yar
no noise, we observed that the average accuracy is well abowg signature fractionv. Without noise, the algorithm enjoys
90% even with five simultaneous failures and only 1% adxtremely high precision, especially when> 0.16. Precision
the failure signature. Intuitively, this is because theup® drops with lower values ofv since the failure signature is
of OD-pairs that form the failure signature for each link araot strong enough to distinguish between multiple contemdi
large; hence, even a small fraction can create a samplerigk groups. We also observe that the precision, similar to
observations that can unigquely identify the injected fa&lu  accuracy, is higher for scenarios with one failure than ¢hos
When random noise is introduced into the failure signatuwéth five. Lower accuracy implies that part of the groundfrut
(shown in Figure 5(a)), we observed that the accuracy ignot present in the hypothesis, which in turn means that the
reduced. In particular, lower fractions of the failure sitres hypothesis might contain additional candidates not pathef
are much more susceptible to noise than the higher ones. Boound truth (i.e., lower precision) to cover all observas,
example, atoe = 0.01, the average accuracy is only 60%thus leading to lower precision.
while it reaches 90% at = 0.16. This is because at smaller In the presence of noise, we only considered the injected
fractions of the failure signature, there is a higher chanéaults as part of the ground truth and not the noise itselfisTh
that the spurious observations can morph the failure sigeatthe localization precision is expected to be much lower as th
of one shared risk into another. Since our algorithm tries #@dgorithm tries to cover all observations including thoaased
identify risk groups with highest coverage first, it is ptsi by noise, which in turn leads to a larger hypothesis. We can
that the failure signature combined with noise will match abserve this trend for both the random (in Figure 5(c)) and
candidate risk group other than the injected failure. structured noise (in Figure 5(d)) scenarios. For the atrect
With structured noise (in Figure 5(b)), we observe a similanoise, though, the precision is higher than that of random
although less pronounced, phenomenon. The accuracy dipsoése; fewer risk groups are required to cover the smaltifvac
little compared to the case when there is no noise but is higteé structured noise introduced.
than with random noise. The reason is as follows. Since noiseéNe also observe that the precision is higher for five failures
is more structured in this case, the resultant failure gigea than one in both noisy scenarios, while the opposite is true
is a composition oty fraction of the original failure signature without noise. The reason for this is straightforward: Sitfoe
anda x 3 fraction of the five noise links, wher@ is the ratio amount of added noise remains constant across the varying
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number of simultaneous failures, the number of spuriogsses, the failure signature will not contain any OD-pdies t
observations and, therefore, the additional risk grougsired are affected by the spurious LSA or syslog message. In such
to cover them remains similar in all cases. The amount dfifrutcases, the natural comparison with our hypothesis (namely,
however, increases linearly with the number of simultaiseotequiring that the ground truth be wholly contained in the
failures injected, thereby increasing the overall precisi hypothesis) is obviously unfair. As a relaxation from tHiscs

Fortunately, we can improve the precision without signifaccuracy metric (which we refer to as ALL), we define a more
icantly decreasing the accuracy by applying the candidatenservative accuracy metric called ATLEASINE in which
selection algorithm described in Section IV-C. In Figurés)5 accuracy is defined to be 1 if at least one of the links in the
and 5(f), we plot the accuracy and precision obtained aftground truth is contained in the hypothesis and 0 otherwise.
applying the ABSOLUTE candidate selection algorithm for a) Candidate selection algorithm:In Figures 6(a)
different absolute thresholds. For this experiment, wedfixeand 6(b), we plot accuracy using both the ALL and
the fraction of the failure signature to 0.16, still very low ATLEAST_ONE metrics and precision of localization. For

Eliminating candidate links from the hypothesis that werthis experiment, we picked the hypothesis with best acgurac
less than the threshold improves precision significantliil unamong those with different topology snapshots. On the %;axi
a threshold of about 25, after which the decrease in accuraeg vary the cardinality of the failure signature (number of
out-weighs the additional benefit obtained by increasirgy tlobservations) from 50 all the way up to 1000 observations
threshold. The optimum threshold will vary depending on thia steps of 50. On the y-axis, the average accuracy/precisio
specifics of the topology and fault detection system andyjlsho corresponding to all failure intervals that have at least x
be derived empirically for a given deployment. observations is shown. In effect, these figures show thaltren

3) Experience with real data:in addition to the simu- inthe accuracy/precision as the failures impact more angmo
lations, we also collected failure data from a section of @D-pairs.
real MPLS-switched tier-1 ISP backbone network. The systemSeveral conclusions can be drawn. First, the number of
monitors MPLS tunnels that originate from a subset of eddailure intervals reduces exponentially from about 600sbin
routers in the backbone, traversing the backbone and finallyth more than 50 observations to about 20 bins with more
terminating at other edge routers. Since the MPLS tunnels @nan 1000 observations (not shown). This is expected, since
established and maintained using the underlying IP togolothe number of large failures is typically much smaller thiam t
(through OSPF), any IP-layer failure can impact the MPLBumber of small failures. Overall, we obtained accuracy and
tunnels above the IP layer. The topology consists of a fgwecision of about 80% when considering failures with more
hundred routers and the probes are transmitted at a periatian 150 observations. Second, the accuracy and precikion o
rate of one every minute. localization increase as the failure size increases liyitieom

The goal of simulation is to stress-test our system; w0 to 150 observations. However, it decreases slightlyr afte
consider every probe loss as part of the failure signatutbat but is inconclusive as the number of failure interval®b
including those due to noise. In the production version ef trsmall to have statistical significance. Larger failure simmes
tool, we are mainly interested in characterizing largeufais, can indicate one of three things, assuming noise in the mktwo
thus noise can be reduced by considering only those OD-paiesains the same across all failures. First, the fraction of
with more than a threshold number of dropped probes. the failure signature captured could be higher, i.e., thlara

We compared our hypothesis with ground truth extractdasted for a larger duration. Second, the failure might hafve
from three data sources: OSPF LSAs, syslogs and SNMP ddacted many OD-pairs in the network, thus the failure ocedirr
During many routing events in the network, the topology isn a popular link that lies on many paths. Finally, there doul
unstable for a short period and probes can get dropped. Rave been many simultaneous failures, the likelihood ottvhi
such routing incidents, we compare the hypothesis gernkrai® not insignificant due to router maintenance events. Fer th
by our algorithm with LSAs corresponding to the routindirst two cases, it is not surprising that our fault localiaat
events. In the core backbone network, many IP links (knovaigorithm performs well, as larger signature fraction msean
as composite links [1]) are in fact, logical bundling of manjarger accuracy verified using simulations. For the finakcas
member interfaces, load-balanced by the router. Member Bince we use the ATLEASONE metric, there is a strong
terface failures affect only the set of probes traversingt thchance that at least one of the root causes is in our hypethesi
interface after the failure and before the router load4t@da In fact, accuracy using ALL metric is about 40% less than the
again between other members. Since the composite linkASLEAST_ONE metric, both due to the approximate nature of
active, such failures do not cause OSPF LSAs but appearoiur ground truth as well as the presence of many simultaneous
router syslogs. In conditions of high link utilization, $uas failures in ground truth.
during failures or during maintenance, links can experenc Third, an ABSOLUTE threshold of 30 that selects candidate
heavy packet loss, and therefore, can cause end-to-endgrdinks in the hypothesis that cover at least 30 observations
to get dropped along these links; such congestion events seems to represent a good trade-off between accuracy and
found in SNMP data. precision. Below this threshold, the precision is signiitta

Note that the ground truth obtained through these datasettoiver while accuracy is only slightly higher. Increasingth
only approximate, as there can be instances when a linkdailcandidate selection threshold beyond 30 leads to a marginal
is reported in the ground truth (using LSAs, syslogs and SNMiecrease in the average accuracy, while precision does not
data) but the event does not impact traffic forwarding. Irs¢heimprove any further.
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(&) Accuracy for the ATLEASTONE (above) (b) Precision, again assuming the correct topologg) Precision as afunctthirgﬁm?)f ABSOLUTE thresh-
and ALL (below) metrics, assuming the corrects known. old, both assuming the correct topology (above)
topology is known. and using the UNION heuristic (below).

Fig. 6. Accuracy and precision for the MAROVERAGE algorithm on real failures from a tier-1 ISP. Thestfitwo graphs assume the correct topology
snapshot is known, while the third shows the decrease irigimacdue to the UNION algorithm that considers the supen$dhe hypotheses obtained using
all the topology snapshots during the 15-minute bin.

b) Hypothesis selection algorithmin Figure 6(c), we ABSOLUTE threshold of 30 eliminated the four false positive
plot the precision for the UNION hypothesis selection abut of the hypothesis and contained only the actual failekl li
gorithm that combines multiple hypotheses obtained usiftis hypothesis therefore has 100% accuracy and precision.
different topology snapshots. The x-axis is the ABSOLUTE Another known black hole scenario happened due to a mis-
candidate selection threshold that we vary from 10 all thg waonfiguration causing brief loss in connectivity to MPLShzat
up to 500. For each of these candidate selection thresholdist traversed that link. Our localization algorithm outgu
we identify all those failure intervals that had at least on@ypothesis that contained four candidate links, two of Wwhic
candidate link remaining in the hypothesis after we applyere eliminated after we applied our candidate selection
the candidate selection thresholds and compute the averafgmrithm. Out of the remaining two, one was the actual black
accuracy/precision for these failure intervals. The numdfe hole while the other was a false positive. However, the false
bins reduces with increasing candidate selection thregmolt positive could not be easily distinguished from the actual
shown in the figure) due to the fact that we discard bins that 8tack hole since both these links appeared on all the paths
not have any candidates left in the hypothesis after we apmlgrresponding to the affected OD-pairs.
the threshold.

From Figure 6(c), we can observe that UNION performs VI. DISCUSSION

similarly to an oracle that can clairvoyantly pick the best |n this section, we discuss some of the main lessons learnt
out of all the hypotheses generated using different togolognd other insights we obtained during our experience.
snapshots. Because UNION includes the links from in all the Not all failures are difficult to localize manually; some#s)
hypotheses, it cannot decrease in accuracy according to 9igual inspection may be sufficient. For example, when all
definition. As shown by the upper two lines of Figure 6(Ckailed MPLS tunnels share one end-point, it is easy to iso-
however, precision reduces by a small amount overall. Beayate the root cause. If the fault lies in the core, however,
the network topology does not change during many of the 1%isual inspection alone is not sufficient as it may require
minute bins containing failures, however, Figure 6(c) undéew hours to localize; our system is most appropriate for
reports the impact of not knowing the correct topology. If weuch situations. Our system is based on passive infereate, b
consider only the bins that had a change in topology (Whes@e could conceive an ‘active diagnosis’ mechanism where
UNION has some effect) precision drops about 15%, as shotgigeted probes are issued to isolate the failure. The huge
in bottom two lines of Figure 6(c). administrative overhead (e.g., obtaining per-link meamsents
c) Real MPLS black holesWe describe three silentis harder compared to end-to-end probeBAmH FAULT) often

failures we analyzed using our system. In the first inciderfinders creating such an active diagnosis framework, hewev
misbehavior of a new device that was connected to theRisk model construction is perhaps the most important step
periphery of the network caused many routes to go throughour methodology; it originates from extensive underdiag
the device that were then subsequently black-holed. Thas i®f the failure scenarios. For example, RATH FAULT, we
perfect example where we need to consider all the topologiserved failures are due to topology changes. Thus, dur ris
changes within a failure interval. In this case, our loaizn model consisted of IP links and not optical layer equipment
system outputted two candidate links as the hypothesis—#wch as optical amplifiers, and fibers. It is also important
(properly functioning) link before and the (black hole)Kin to ensure consistency between the risk model and the cor-
after the re-routing of traffic. For this incident, the ldzation responding failure detection system. For example, inpmH
accuracy therefore is 100% while precision is only 50%. FAULT, there is no need to model customer facing links in the

In another failure scenario, the forwarding component edpology, as the probes never traverse any of those links.
a line card failed to dequeue packets until the card wasConstructing the right risk model is not easy, even if the
reset. Our localization system output a hypothesis that heategory of risks to be modeled was known. For example, in
five candidate links, out of which, when we applied ouan OSPF network, multiple paths can exist between a given
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source and a destination if the paths share the same casth as Generalized Multi-Protocol Label Switching (GM-
(ECMP [14]), in which case traffic is split based on a hashALS). Due to their importance, previous work has attempted
function applied on source-destination IP addresses. Memve to automatically infer SRLGs [28] in the optical domain. To
probes measure only one among these multiple paths anthé best of our knowledge, however, we are the first to use
is difficult to know which one they measure. Similarly, inSRLGs in combination with higher-layer fault notificatiotus
composite linkgl], many optical circuits are bundled togetheisolate failures in the optical hardware of a network bacido
into one logical IP link and router splits traffic accordirg t without the need for physical-layer monitoring.
a hash function. Partial failures involving one memberwdirc  PATH FAULT problem falls into a general class of inference
can result in the loss of some probes. In these cases, the psblems that includes traffic matrix estimation [40], tamo
model needs to be constructed based on the instantanebus ggthy [3], [11], [21], [23], [35], [36], [39], and many other
traversed by the probe. Since this is difficult, we consitier t Hence, techniques applied in these domains could pothntial
union of all potential paths, which is not accurate. apply. Moreover, the problem of fault isolation is not liemt
It is often not enough to just model the risks once; dde networking; similar problems exist in any complex system
termining the right risks to model is a continuous proced$®egardless of domain, fault detection systems have taken th
in many cases. For example, inNk FAULT, modeling an basic approaches: rule- or model-based reasoning [2], [10]
OSPF area as a shared risk was not enough. A failure {i6], codebook approaches [30], [38], or machine learning
observed involved only 70% of the OSPF area, which we coulsuch as Bayesian and belief networks [7], [37], [32]). The
detect using the error threshold. Upon further investigative  difficulty with probabilistic or machine-learning apprdess
needed to introduce a new risk—an OSPF area with MPLS that they are not prescriptive: it is not clear what sets
enabled in order to capture this failure. Risk models are alef scenarios they can handle besides the specific training
almost always dynamic; the rate at which a given risk moddata. Rule-based and codebook systems (otherwise known
exhibits churn varies depending on the problem. Becauseasf “expert systems”) are often even more specific, only be-
this churn, there could be differences between the risk inodieg able to diagnose events that are explicitly programmed.
and reality that may affect localization. Using error tiralsls Model-based approaches are more general, but requirdedietai
helps mitigate the problem to some extent. information about the system under test. Dependency-based
systems like ours, on the other hand, allow general inferenc
VIl. RELATED WORK without requiring undue specificity.
Monitoring and management is a challenging problem for VIIl. CONCLUSIONS
any large network. It is not surprising, then, that a numider o
research prototypes (e.g., [5], [8], [13], [20], [24], [2€Ind . L .
commercial products such as NetFACT [15], OpenView [16 ffective methodology for localization of faults in the wetk.

ur approach based on risk models localizes faults even in
IMPACT [17], EXCpert [24], and SMARTS [30] have been d.eihe absence of any network-generated alarms, either kecaus
veloped to provide powerful, generic frameworks for hamglli

- : . they were not available or because the failures were silent
fault indicators, particularly dlverse_ SNMP'b".’l?Q'?d [4] mea, nature, thus aiding network operators in troubleshaptin
surements and rule-based correlation capabilities. Hewey,

. . : . o 7 failures even when conventional monitoring fails. While we
their reliance on the inherent monitoring capabilities le t . - e
) : discuss two specific scenarios in this paper, there may by man
network elements restricts the types of failures theseenyst

can localize. Our systems complement these solutions &r (hther scenarios where our methodology is directly applezab
. ' Y : pen . E at are yet to be explored. Our extensive evaluation based
particular problem scenarios described in the paper.

. o on both controlled simulation and actual failure data atedi
Much of the existing fault-localization literature focigsen

i techni hich h b lidated domi through real-world deployment in a tier-1 ISP, indicatestisp
generic techniques which have been validated pre omnanty, o jation can obtain high localization accuracy and igien
against simulated data; in this paper, we validate our agbro

. | failure data f tional tier-1 ISP nekw in many failure scenarios. In particular, our experience ha
using rea failure data from an operationaf tier- NEXYO shown that the full power of statistical models may not be

Qur ns_k—modellng approach follows other approaches etIIJdIneeded in practice: our greedy approximation suffices fer th
in the literature that employ dependenc_y graphs for fagtllo roblem scenarios we consider.

ization (see [33] and references therein for a comprehensiv
survey of such approaches). In many such graphs, dependen-
cies can even be probabilistic in nature, which requirestiat

cal inference mechanisms such as Bayesian inference [31] B AVICI Systems Inc., http:/www.avici.com.

. . . 2] S. Brugbosi, G. Brunogt al, “An expert system for real-time fault
belief propagation teChnlqueS [25]' [34]' Unfortunatehese diagnosis of the Italian telecommunications network,"3iidl Symp. on

approaches do not typically scale beyond a few nodes (less Integrated Network Managemerit993, pp. 617-628.
than 50) in the dependency graphs [25]_ [3] J. Cao, D. Davis, S. V. Wiel, and B. Yu, “Time-varying nefui

" : . . . tomography,”J. Amer. Statist. Asspeol. 95, no. 452, pp. 1063-1075,
One critical component in applying the risk-modeling ap- 20009 ks ° PP

proach in theLINK FAULT scenario is the construction of [4] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “A simpletwork

SRLGs. Network engineers routinely employ the concept of management protocol (SNMP),” IETF,” RFC 1157, May 1990.
[5] C. S. Chao, D. L. Yang, and A. C. Liu, “An automated faulagihosis

SRLGS to provi.sion di_SJOinF paths in opj[ical networ.ks, emm system using hierarchical reasoning and alarm correlationJournal
into many traffic-engineering mechanisms, and in protocols of Network and Systems Managememt. 9, no. 2, 2001, pp. 183-202.

In this paper, we developed and evaluated a simple yet
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