
Designing and implementing malicious processors

Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier, Weihang Jiang, and Yuanyuan Zhou
University of Illinois at Urbana Champaign, Urbana, IL 61801

1 Introduction

It may be possible for attackers to modify integrated
circuits (ICs) to insert covert, malicious circuitry into
manufactured components; a recent Department of De-
fense report1 identifies several trends that contribute
to this threat. First, it is infeasible economically for
government-based IC suppliers to produce technology
that matches the performance of commercial suppliers.
These high-performance ICs provide a tactical advantage
making them an indispensable resource. Second, com-
mercial suppliers are moving more design, manufactur-
ing, and testing of ICs to a geographically diverse set of
countries in an effort to cut costs, making it infeasible to
secure these steps in the IC life cycle. Together, these
trends lead to an “enormous and increasing” opportunity
for attack.

Motivated attackers will subvert the IC supply chain
if doing so provides sufficient value. Since modifying
an IC is an expensive attack, it is doubtful that “script
kiddies” will turn their adolescent energies to malicious
processors, but the same cannot be said for attackers with
resources. If malicious processors are capable of run-
ning valuable attacks, governments, terrorist organiza-
tions, and so on will deploy them despite their cost. His-
torically, these types of organizations are experienced at
covert operations, and have demonstrated considerable
ingenuity in pursuing their goals. In contrast, there is lit-
tle work on malicious processors.

If an attacker were able to include a malicious IC
within a computer system, it would give them a funda-
mentally higher level of control compared to software-
based attacks. While the recent SubVirt project shows
that attackers can gain control over operating systems by
using virtual-machine monitors (VMMs) to control the
layer beneath, ICs occupy yet a lower layer. A malicious
IC would be below all software, including VMMs, so
compromising ICs gives attackers complete control over
the entire software stack. This high level of control pro-

1Defense Science Board Task Force On High Performance Mi-
crochip Supply, 2005.

vides attackers with a fundamental advantage over de-
fenders running above.

In this presentation we will describe the design
and implementation of intelligent malicious processors
(IMPs) that run malicious services within the processor
itself. Clearly simple attacks are possible (e.g., shut off
the processor after one billion instructions), but we show
that attackers can carry out sophisticated attacks using
IMPs. We will discuss four example attacks we imple-
mented and we show that general-purpose attacks imple-
mented using IMPs are possible, practical, and qualita-
tively harder to detect and defend against than current
software-based attacks.

To better illustrate our ideas, this presentation
will include a live demo of a hardware-based attack.
For our demo we will show one specific attack where we
modify the design of a SPARC processor. We run our
modified processor on an FPGA development board, and
our system includes a full Linux distribution.

For our demo we will show a malicious service that
acts as a permanent backdoor into a system. To use the
attack, an attacker sends an unsolicited network packet
to the target system and the target OS inspects the packet
to verify the UDP checksum. The act of inspecting
the packet triggers the trojaned hardware, and the mali-
cious service interprets the contents of the packet as new
firmware that it loads into the processor invisibly. The
target operating system then drops the unsolicited packet
and continues operation completely oblivious to the at-
tack.

Our firmware monitors the login application look-
ing for an attacker that logs in using the password “let-
mein”. Once this password is detected, the firmware
grants access to the attacker. At this point the attacker
can then use any traditional methods of manipulating the
system to avoid detection and to carry out malicious ac-
tivities. The underlying mechanism we use to implement
this attack increases the logic-gate count by only 0.08%,
and gives us unlimited access to the machine without ex-
ploiting a software vulnerability.

1


