The Case for
an Integrated Platform for Parallel Software

BY SEAN HALLE, UC SanTa Cruz, SEANHALLEQYAHOO,COM

Parallel Programming is entering the mainstream due to the exponentially increasing number of cores
on each successive generation of processor chip. The industry needs a solution to creating parallel soft-
ware that allows similar levels of productivity to current programming practices, and allows a program to
be written once then run on future generations of processors as well as on past generations of processors.
The solution needs to be a widely accepted standard, so that software developers can write to one stan-
dard format, and their programs will run on any current hardware. Hardware manufacturers need to be
able to write one adaptor for their new, parallel, machine then run existing out-of-the-box programs.

To summarize, industry needs a solution for parallel software that simultaneously meets these four
goals: 1) widely accepted, uniformly implemented standard 2) high programmer productivity 3) write
once, run anywhere 4) high performance anywhere.

These goals, together with the inherent nature of parallel software, lead to a web of inter-dependen-
cies. A means for creating parallel software that achieves all four goals will have to respect all of the
dependencies. We propose a graph of many of these dependencies (as seen in the figure), then describe
why each dependency-link is in the graph and what the presence of the link implies.

We draw the conclu- The arrows point from dependent to propendent, read as “tail depends on head”
sions, from the pattern of stewardshin Generic scheduler symbol in application
. entity communicates with application code
dependencies, that an |

entire software platform

i Standard Mechanism to
Standard Computation
should be defined as a (Clear Model ©OS Interface separate scheduler
Coherent (free from HW from Application

implications)

coherent comprehensive
standard. The standard
should specify the inter-

Inclusive)

faces between every com- Standard Scheduler
Test Harness written by
ponent of the platfrom, interface HW people
from development tools, 3 1?) A
through a packaging tool, e sweor M ot st
: incl. with each ~ Reference vev.

a computation model, Reference App Applications (llzrrr:e;ér;?;ni\)/\/ Format interface
and an intermediate
format, all the way to an 0 2
. . . Ref
install-time compiler, an et Profiing and
OS interface and a run- Performance 1"V Knowledge
. information
time system. Further, we
suggest that a non-profit et J)

: : Coherent Enforce Source nstal-time compiier Scheduler
stewardship entity should Development Conformance Lansuages produces high perf =t~ i)

. Xecu

be created that guides
development, writes the
standard, tests against a wide High Programmer Hardware High
reference platform, and Acceptance Productivity Independence Derformance

legally enforces confor- The dependency graph roots are at the bottom, where the goals are stated in bold.

mance to the standard. From each goal emanates a number of arrows, each indicating something that goal
depends directly upon.

The stewardship entity would use branding and a certification mark to enforce conformance. Only
products that had passed the certification process could use the mark. The entity should be, because of
the need for wide acceptance, a non-profit, but charge for the certification process in order to support its
various activities.

The proposal is not entirely theoretical as concrete proposals have been made for the design os such a
platform, and the design of each component.

