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Parallel Programming is entering the mainstream due to the exponentially increasing number of cores
on each successive generation of processor chip. The industry needs a solution to creating parallel soft-
ware that allows similar levels of productivity to current programming practices, and allows a program to
be written once then run on future generations of processors as well as on past generations of processors.
The solution needs to be a widely accepted standard, so that software developers can write to one stan-
dard format, and their programs will run on any current hardware. Hardware manufacturers need to be
able to write one adaptor for their new, parallel, machine then run existing out-of-the-box programs.

To summarize, industry needs a solution for parallel software that simultaneously meets these four
goals: 1) widely accepted, uniformly implemented standard 2) high programmer productivity 3) write
once, run anywhere 4) high performance anywhere.

These goals, together with the inherent nature of parallel software, lead to a web of inter-dependen-
cies. A means for creating parallel software that achieves all four goals will have to respect all of the
dependencies. We propose a graph of many of these dependencies (as seen in the figure), then describe
why each dependency-link is in the graph and what the presence of the link implies.
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mance to the standard. From each goal emanates a number of arrows, each indicating something that goal
depends directly upon.

The stewardship entity would use branding and a certification mark to enforce conformance. Only
products that had passed the certification process could use the mark. The entity should be, because of
the need for wide acceptance, a non-profit, but charge for the certification process in order to support its
various activities.

The proposal is not entirely theoretical as concrete proposals have been made for the design os such a
platform, and the design of each component.



