

Eric Fontaine
Hsien-Hsin Lee

GeorgiaTech GeorgiaTech

The Pin Problem

- ITRS predicts slow linear growth in number of pins
 - 2/3 for power and ground, 1/3 for Signal I/O
 - Limited by physical metal properties

ITRS Pin/Pad Predictions

The Bandwidth Problem

- But number cores expected to grow exponentially
 - Greater Power demand
 - Greater Off-chip Bandwidth demand
- How can sustain performance?
- No Data -> NO COMPUTATION
 - Idle cores
- 3-D die-stacked integration only exacerbates
 - Same 2-D real estate for pins
- Bus Frequency scaling and compression has limits

Our Solution: Bicephaly

- Power network designed for worst-case
- But if bandwidth bound, processor does not consume as much power
 - Last level cache miss disrupt data flow
 - Cores/functional units idle waiting for data
- Exploit this fact by dynamically converting power pins into data pins when processor becomes bandwidth bound

How Bicephaly Works

- Processor monitors performance and bus utilization
 - Switch between high-bandwidth and low-bandwidth modes
 - Control signal P/D' ctrl selects power or data lines
 - Duplexable power/data (P/D) lines reconfigured into expanded data bus in high-bandwidth mode

Possible Power Saving Techniques

- Disable cores
- Dynamic voltage and frequency scaling of core(s)
- Disable functional units
- Disable cache lines
 - Effective for data-streaming workloads

Physical Challenges

- Bicephaly pins basically use wide t-gates
 - Is full duplex or half duplex better?
- Bus affected by power supply noise
 - Power supply affected by bus noise
- di/dt noise (ground bounce)
- Need decoupling capacitors
 - Capacitors add delay -> slow down bus
- IR drop across power supply network
- Dynamic Reconfiguration Mechanism
 - How long to wait for fluctuations to die down?
 - Stagger disabling?

Floorplaning Challenges

- Which pins to reconfigure?
 - Avoid large local fluctuations in power supply network
 - Distribute reconfigurable pins evenly across chip?
 - Give each core separate power supply network?
 - How synchronize communication?
 - Transfer data across chip needs global pipelined wires
 - Need to synchronize with memory controller

Optimization Challenges

- Control logic to switch modes
 - How often to switch?
 - Does pipeline have to be flushed?
 - Avoid switching too frequently
 - Use upper/lower thresholds
 - Must access performance counters
 - Communicate values across chip
 - What performance counters to use?
 - FSB utilization, IPC, L2 miss rate, # memory accesses,...
 - Must use transistors to evaluate expression
- How reach optimal tradeoff?
 - How many duplex pins to use?
 - Balance data delivery / data consumption

Summary: Maximize performance by duplexing power and data over same pin.

Questions?

