
Fact Checking and Analyzing the Web

François Goasdoué1

Julien Leblay1

1OAK team, Inria Saclay & LRI
Université Paris-Sud

Orsay, France

Konstantinos Karanasos2
∗

Ioana Manolescu1

2IBM Almaden
Research Center

San Jose, CA

firstname.lastname@inria.fr

Yannis Katsis3

Stamatis Zampetakis1

3UCSD Database group &
WebDam project, Inria Saclay

San Diego, CA

ABSTRACT
Fact checking and data journalism are currently strong trends.
The sheer amount of data at hand makes it difficult even
for trained professionals to spot biased, outdated or sim-
ply incorrect information. We propose to demonstrate Fact-
Minder, a fact checking and analysis assistance application.
SIGMOD attendees will be able to analyze documents us-
ing FactMinder and experience how background knowledge
and open data repositories help build insightful overviews of
current topics.

Categories and Subject Descriptors
H.4.3 [Communications Applications]: Information
browsers

Keywords
Linked Data, Online Fact Checking, Semantic Annotations

1. INTRODUCTION
Tools for authoring electronic content and sharing it

through the Internet are very widely adopted by now. First
blogs, and then social networks, grew more or less in paral-
lel with the major media providers’ move towards allowing
users to record their opinions next to the articles. These
technical means to hold back-and-forth conversations, as
well as the Linked Open Data movement1, in which public
and private institutions publish their data for transparency
and accountability reasons, have sparked new usages of the
Web. As another example, public figures rely heavily on
social networks to communicate their positions to the pub-
lic, collect feedback, or survey opinion trends. At the same
time, individuals interested in a particular topic or action
(e.g., the impact of tax policies on exports, or the impact

∗This work started while the author was at Inria Saclay.
1

http://linkeddata.org

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

of traffic on asthma cases) can comb the Web for bits of in-
formation, connect, interpret, annotate and re-share them.
Such data gathering and fact checking have come at the
core of “data journalism”, pioneered, e.g., in Europe by The
Guardian2 and growing through efforts such as FactCheck3,
Politifact4, and similar French sites5.

Fact checking and analysis (FCA, for short), viewed as
the process of analyzing a piece of information, crossing it
with existing knowledge, verifying its accuracy and possibly
enriching it with nuances, comments and connections to rep-
utable sources, has an inherent part of human effort, thus
it is unlikely to ever be completely automatized. This is
because FCA requires not only modus ponens-style manipu-
lation of facts (i.e., automated reasoning, for which mature
software tools exist by now), but also involves information
extraction tasks at which humans are still better than soft-
ware, as well as judging (through the context of one’s ex-
perience) the cultural environment of the target audience of
the analysis result.

Nevertheless, many computerized tools for natural lan-
guage processing, information extraction, and data storage,
indexing, querying and visualization can be exploited to fa-
cilitate FCA. Such tools are today mostly used by IT spe-
cialists, yet the avidity of the public at large for reading,
analyzing, commenting, and crossing information raises the
need for integrated, generic and open tools. Wide-audience
FCA tools must be integrated to spare the user the effort of
gluing several software components. They need to be generic
to handle many types of input. For instance, if one wants to
analyze some tweet stream, one very likely needs to archive
and analyze Web pages, RSS feeds or domain ontologies. Fi-
nally, FCA platforms need to be open w.r.t. the supported
data formats, so that they are not only information sinks
but also information sources, and w.r.t. the architecture, so
that they can be easily customized and extended.

We propose to demonstrate FactMinder, a customizable
FCA assistant based on (i) existing technologies for informa-
tion extraction, (ii) the W3C standards XML for represent-
ing structured Web documents, RDF for encoding facts and
more generally Semantic Web data, and RDF Schema for
encoding knowledge (i.e., ontologies), and (iii) off-the-shelf
XML and RDF content management tools. At the core of

2
http://guardian.co.uk/data

3
http://www.factcheck.org

4
http://www.politifact.org

5
http://www.liberation.fr/desintox, http://decodeurs.blog.lemonde.fr

997

http://linkeddata.org
http://guardian.co.uk/data
http://www.factcheck.org
http://www.politifact.org
http://www.liberation.fr/desintox,~http://decodeurs.blog.lemonde.fr

FactMinder lies XR [1], a data model combining XML and
RDF under the single paradigm of annotated documents, and
XRQ, its associated query language. XRQ is used to define
XRQ views that are the basic building blocks of our FCA
application.

The demonstration will enable users to build and enrich
a topic-centric FCA repository, through the following steps:

• load documents they want to analyze, and visualize the
annotations/connections that FactMinder may have
stored about these documents in the past;

• perform simple information extraction (e.g., named
entity recognition, identifying people and places) on
these documents using automated tools;

• manually enhance the information extraction based on
a structured knowledge base (domain ontology) stored
within FactMinder, defining new concepts and/or us-
ing free-text comments;

• semi-automatically check the consistency of facts from
the documents, against FactMinder’s repository of doc-
uments and facts;

• record in FactMinder’s repository the program- and
user-generated annotations about the analyzed docu-
ments, while keeping them intact;

• visualize and/or share with others (by publishing
through a FactMinder-provided URI) the results of the
analysis, consisting of documents and annotations.

Usability in FCA translates in the ability and ease to find
and inspect relevant information, to make informed judg-
ments. To support this, we rely on expressive XRQ views
over joint document and semantic corpora, as we explain
later on.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly present the FactMinder data model (XR)
and query language (XRQ) for representing and handling
annotated documents. In Section 3, we give an overview
of our system by describing its architecture and GUI. In
Section 4, we describe the FactMinder demonstration. In
particular, we discuss the tasks users will be able to exper-
iment in a typical data journalism-inspired FCA scenario.
We then present some related works and conclude.

2. BACKGROUND: THE XR DATA MODEL
AND QUERY LANGUAGE

A crucial feature of FactMinder is its ability to anno-
tate semi-structured documents with semantic information.
Hence, it requires a data model allowing the representation
of such data, and a query language to extract information
from it, based on both document structure and annotation
semantics. To this end, FactMinder leverages the XR data
model for representing annotated documents and the corre-
sponding XRQ query language. We briefly describe XR and
XRQ before explaining how they function within FactMin-
der. For more details, the reader is referred to [1].

XR allows the representation of semantically annotated
semi-structured documents by combining in a single model
two standard W3C data models: the XML model for semi-
structured documents and the RDF model for semantic in-
formation. In a nutshell, an XR instance is a pair (X,R) of
two sub-instances X and R, where X is an XML instance
and R is an RDF instance (or graph), respectively, as per
the corresponding W3C specifications. An XML document

can be viewed as a named, labeled, ordered, unranked tree,
while an RDF graph is a set of (s, p, o) triples, where each
triple states that the property p of resource (or subject) s has
value o. Furthermore, the RDF specification enables declar-
ing classes, properties, and semantic relationships (i.e., con-
straints) between them, e.g., Senator is a subclass of Politician.

The main feature of XR is that it allows the RDF an-
notations to refer to XML nodes. This is accomplished by
assigning to each XML node a Unique Resource Identifier
(URI). This URI of an XML node (called XURI), can then
be referenced by an RDF triple, thus enabling the inter-
connection between the XML and the RDF sub-instance.
XURIs can appear in the RDF sub-instance R in any place
where a URI is allowed (which is, in the s, p, or o position
of any triple). For instance, an XML node can be treated as
the subject (s) in order to state that a document fragment
is relevant to some concept or entity.

To query documents, FactMinder employs the XRQ query
language, combining (subsets of) the standard W3C query
languages for XML and RDF, namely, XQuery and SPARQL,
respectively. To query XML, it supports a conjunctive sub-
set including (possibly nested) FLWR expressions. To query
RDF, it relies on conjunctive Basic Graph Patterns (or BGPs,
in short), a useful core fragment of SPARQL. Importantly,
XR queries allow expressing not only disjoint queries over
each of the sub-instances X and R of an XR instance, but
also queries that join across the sub-instances, as illustrated
by the sample query below:

qX

for $p in doc(d1)/blog//post[date=doc(d2)//tweet/date],

$an in $p/author/name, $pu in XURI($p)

return $p/title, $an, $pu

qR
($x, rdf:Type, Senator), ($x, hasName, $an),

($x, fullName, $f), ($x, inParty, $z)

rX 〈quote author={$f}〉{$p/date}, {$p/title}〈/quote〉
rR ($pu, postedBy, $f), ($pu, postFromParty, $z)

In this query, qX , respectively, qR are the XML and RDF
sub-queries, whereas rX and rR build the query result as a
new XR instance, consisting of an XML element and two
RDF triples. The query searches for an XML blog post
whose author is declared to be a Senator, affiliated to party
$z, in the RDF database. The query returns: an XML snip-
pet with the Senator’s full name (coming from the RDF
database) and her blog quote, and two RDF triples con-
necting the post to the senator’s full name and political af-
filiation. The query illustrates XRQ’s ability to join data
from the XML and RDF sub-instances (on $an), and out-
put in XML data coming from RDF (the value of $f) and
vice-versa (the URI $pu of the blog post in the result triples).

In accordance with the RDF semantics [2], an XR query
takes into account all the triples that can be entailed from
the data stored in the RDF instance. For example, if the
resource BillClinton is described as a Politician and Politician is
a subclass of Person, BillClinton should be in the result of any
query looking for resources of type Person. As we explain in
Section 3.2, this can be used to tailor the data shown to the
user in connection with the document under analysis, to the
precise concepts found within that document.

3. SYSTEM OVERVIEW
We present the FactMinder architecture (Section 3.1) be-

fore describing the user-facing modules (Section 3.2).

998

Figure 1: FactMinder architecture.

3.1 Architecture
FactMinder follows a client-server architecture, detailed in

Figure 1. In this Figure, boxes depict the FactMinder mod-
ules. Solid ovals represent the tasks performed by the ap-
plication automatically, whereas dashed ovals are the tasks
performed by users inside and outside the system.

The FactMinder client is made of three components, an
information extractor, a rich browser and a dashboard, illus-
trated by the screenshot in Figure 2, each playing a differ-
ent role in the fact checking process. When a document is
opened within the client, the information extraction mod-
ule (which relies on OpenCalais [3]) automatically finds the
topics, entities and relationships it contains. Documents
are opened in the rich browser, where the user can man-
ually add or edit annotations. The dashboard is made of
views over the XR database with the background informa-
tion, each rendering a specific aspect of the information at
hand. These views are easily customizable; the user iter-
atively refines them through the GUI when performing an
analysis task. To pursue her investigation, the user switches
back and forth between the rich browser and the dashboard.
Any insight she gets from the interface may lead her to add
some detail to the document as a new annotation, or to refine
a view and get a better understanding of the data. FactMin-
der uses an XR server to integrate XML and RDF from the
Web, and store the annotations created both automatically
and manually. The server runs on top of BaseX 7.3 [4] for
managing XML data, and Virtuoso 6.1.6 [5] for the RDF
data. Bold arrows in Figure 1 denote data flows between
each component of the system. Content created during the
investigation is stored in the database for future use. The
analysis may lead the user to find related contents, run ad-
ditional documents through the same analytical process etc.

Next, we detail how users interact with the application.

3.2 User Interface
The screenshot in Figure 2 exemplifies the main UI com-

ponents assuming a scenario where a journalist checks some
facts from a French online newspaper, about Bill Clinton’s
support for Barack Obama, during the 2012 US election
campaign.

The rich browser. In this area, users can open documents
by entering their location, either on the local machine or on
the Web. Unlike conventional browsers, it provides a rich

Figure 2: Main FactMinder window.

set of annotation tools. First, the annotations produced by
the information extractor upon opening the document are
accessible to the user by hovering over the text. Second,
the user can add her own annotations in a faceted editor
by selecting some content, specifying comments and new
knowledge, and enriching or correcting existing annotations.
Comments contain, e.g., a text body, creation date, author
and category, such as“FalseClaim”, “uri1 confirms this”, etc.

The dashboard. The dashboard area is composed of XR
info panels (XIPs, for short). These panels assist the user in
understanding the content she is working on; each panel is
dedicated to one aspect of the information under scrutiny.
The information content of an XIP is gathered through an
XRQ parameterized view over the data in the browsing panel
and/or the background information (the pre-existing XR
database). Semantic connections may exist among XIPs
used simultaneously (much in the way the content in part of
a Web page changes according to the user interaction with
the rest of the page). For instance, the default XIP, shown
in Figure 2, comprises a “Concepts” XIP, at the center top
of the Figure, featuring all the unique concepts appearing
in the currently selected document. Selecting an item in
the list, here “Bill Clinton”, causes all the occurrences of the
item to be highlighted in the document. The “Related sto-
ries” XIP, located directly below, gathers all documents that
were opened by the user or member of her group, containing
the same concepts as those of the current document.

XIPs are highly customizable, and users can add, delete,
and re-arrange them at any time. Users define new XIPs by
opening a “new panel” editor (detailed below), providing the
XIP name and the associated XR query.

Dependent XIPs. By default, an XIP is refreshed auto-
matically when the user opens or selects a new document.
Moreover, the recomputation of an XIP can be governed
by the user interaction with another XIP; in this case, we
call the former dependent, and the latter the parent. For
instance, in Figure 2, the “Facts & figures” XIP depends on
the “Concepts” XIP. Whenever an item is selected by the
user in the parent “Concept” panel, facts and figures about
the chosen concept are displayed in the dependent panel.

Editing XIPs. To create or edit an XIP, the user relies on a
graphical editor, such as the one illustrated in Figure 3. An
XIP editor opens up, for building XR queries in a graphical
form (by editing tree and triple queries). Auto-completion,
based on the RDF vocabularies and the datasets, helps the
user type-in long URIs and common sentences. To create
dependent XIPs, the user simply needs to designate an XIP
among the list of existing ones at the bottom of the editor.

999

Figure 3: View editor.

The user is then presented with the list of the returned vari-
ables of the parent XIP which can be re-used to establish
connections among dependent views.

Semantic template XIPs. One can easily write concept-
specific XIPs. For instance, the default facts for a Company

may include the net result in 2012, whereas for a Person, the
relevant facts may be the age, nationality and profession.
XR’s support for RDFS semantics (e.g., subclass relation-
ships) allows one to adapt queries to the context. Suppose
that XIP “Concept” of Figure 2 has the following query def-
inition:

q1R ($x, rdf:type, owl:Thing), ($x, rdf:label, $label)

q1X for $p in $html//p, $x in XURI($p)

return $p, $x

r1X 〈div class=”list-item”〉$label〈/div〉

Next, one can define an XIP called “Bio” depending on
“Concept”, displaying focused information about the item
currently selected in “Concept” and referring to a Person:

q2R ($x, rdf:type, Person), ($x, hasName, $name),

($x, dateOfBirth, $date)

r2X 〈div〉
〈div class=”info field”〉Name〈/div〉
〈div class=”info value”〉$name〈/div〉
〈div class=”info field”〉Date of birth〈/div〉
〈div class=”info value”〉$date〈/div〉

〈/div〉

Notice that variable $x appears in the queries of both XIPs.
By selecting an item from “Concept”, the value bound to
$x in that item is passed to the dependent query before
executing it. The dependent query only yields a result if
the resource bound to $x has type Person (notice the first
triple pattern in q2R). If the selected item has another type,
e.g., Company, the dependent will not show up.

Further, assume that the user wants to show more spe-
cific information if the selected item is a Politician. He can
customize the template by creating a second XIP depend-
ing on “Concept”, for instance to include information about
politicians. The new XIP’s query could look like this:

q3R ($x, rdf:type, Politician), ($x, inParty, $y),

($y, name, $party)

r3X 〈div〉
〈div class=”info field”〉Affiliation〈/div〉
〈div class=”info value”〉$party〈/div〉

〈/div〉

When the selected item in the parent XIP refers to a Politi-

cian, both dependent XIPs will be displayed.

4. SCENARIOS
Our demo is centered around political fact checking sce-

narios. Our background datasets will include DBpedia,
YAGO, selected datasets from http://data.gov, Twitter feeds
from prominent international politicians collected in the past
months, and pre-selected, recent, political news articles from
reputable online newspapers. We will show how to use Fact-
Minder to explore the background knowledge, and engage
the user in an interactive investigation process.

Users will be able to adapt scenarios to their own interest
using documents from the Web. As they browse, users will
be able to experiment with the annotation tools, and see
how automatic and user-generated annotations from other
users can be enhanced through the annotation editor. Upon
starting the demo, a default set of XIPs will be displayed.
Then, users will be guided through the process of modifying
them and creating new ones to better reach the informa-
tion they are looking for. Finally, we will demonstrate how
all content created throughout the process is stored in the
knowledge base, and can be reused in other scenarios.

5. CONCLUDING REMARKS
Making sense of Web resources, analyzing and consoli-

dating their claims is an activity from which humans will
most probably never be completely eliminated. However,
the complexity of knowledge found in open data sources re-
quires powerful, flexible ways for users to retrieve, analyze
and understand the data, as well as produce and share com-
plex annotations on the analyzed documents. Existing tools
let users annotate Web pages directly from their browser,
e.g., Dispute Finder [6] helps distributed users annotate
pages to uncover disputed content or use it as supporting
evidence for other claims. Closer to our work, Document-
Cloud [7] provides an online service for newsrooms, where
users create collections of documents, analyze and annotate
them, share annotations, etc.

FactMinder is positioned as a software tool for facilitat-
ing fact checking and analysis. At its core is the interplay
between visualization and knowledge production. FactMin-
der is powered by XR, a data model for documents with
annotations [1], and is based on open standards, enabling it
to integrate existing sophisticated tools for dedicated tasks.
Unlike existing tools, an innovative characteristic of Fact-
Minder is its support for XIPs, which can be seen as cus-
tomizable “data lenses”.

6. REFERENCES
[1] F. Goasdoué, K. Karanasos, Y. Katsis, J. Leblay,

I. Manolescu, and S. Zampetakis. Growing Triples on
Trees: an XML-RDF Hybrid Model for Annotated
Documents. In Very Large Data Search Workshop,
2011.

[2] RDF Vocabulary Description Language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-mt/, 2004.

[3] OpenCalais. http://opencalais.com/.

[4] BaseX. http://basex.org.

[5] Virtuoso Open Source Edition 6.1.6.
http://virtuoso.openlinksw.com.

[6] R. Ennals, B. Trushkowsky, and J. M. Agosta.
Highlighting disputed claims on the web. In WWW
Conference, 2010.

[7] The document cloud. http://documentcloud.org/.

1000

http://data.gov

	Introduction
	Background: the XR data model and query language
	System overview
	Architecture
	User Interface

	Scenarios
	Concluding remarks
	References

