
With Great Freedom for Inconsistent Data
Comes Great Scalability Responsibility

Yannis Katsis† Alin Deutsch† Yannis Papakonstantinou† Vasilis Vassalos‡

ikatsis@cs.ucsd.edu deutsch@cs.ucsd.edu yannis@cs.ucsd.edu vassalos@aueb.gr

†CSE Department, UC San Diego
‡Athens University of Economics and Business

ABSTRACT
Shared online databases, such as Google Fusion Tables or Quick-
base, allow community members to collaboratively maintain and
browse data. While users may believe in conflicting facts (due
to conflicting sources, measurements or opinions), current online
databases do not offer support for the management of data conflicts.

Thus online databases could clearly benefit from technology for
uncertain/incomplete databases. However, prior works on uncer-
tain databases are of limited help when designing a conflict-aware
online database, for two reasons: First, their performance degrades
rapidly as the number of conflicting facts escalates, which can be
the case in large user communities. Second, they were built as stor-
age models, resulting in data models that are either non-simple or
non-compact and thus may require additional, often non-trivial pro-
cessing before they appear in the Frontend of an online database.

To overcome these problems, we describe Ricolla; a scalable on-
line database with built-in support for data conflict management.
Ricolla allows users to model conflicting data, inspect them in a
compact form and resolve inconsistencies in an “as-you-go" per-
sonalized fashion, even in the presence of a large number of con-
flicts. It achieves this by coordinating a novel conflict-aware data
model (shown to be both compact and simple) with respective ef-
ficient query answering algorithms, that allow the system to scale
to a large number of data conflicts (as evidenced by a performance
comparison against Trio and MayBMS; two recent research proto-
types for uncertain data). In parallel, the data model’s simplicity
and compactness make it suitable for direct use by the Frontend.

1. INTRODUCTION
Lately, online databases (Google Fusion Tables [3], QuickBase

[4], Zoho Creator [6], Caspio Bridge [1], TrackVia [5] and many
more) enable online communities to collaboratively maintain their
data. Multiple users simultaneously enter and read data in the on-
line database via its web interface. We argue next that the freedom
that characterizes the use of online databases fits perfectly the mo-
tivation of uncertain/incomplete databases [10, 11, 15, 17, 20, 21,
22] and, at the same time, highlights two yet-unaddressed chal-
lenges: (a) creating a model and query answering algorithm for un-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

certain data that scale in the number of contradicting facts present
in the database and (b) ensuring that the data model is simple and
compact to be directly used by the Frontend of an online database.

The users of an online community may hold conflicting beliefs,
which they want to represent in the database. The reason for these
conflicting beliefs could be different biases, different sources (where
one may be more up-to-date than the other), different interpreta-
tions of the same phenomena and many more. Instances of the
latter often appear in the sciences, where, as explained in [32],
researchers have contradicting opinions (e.g., about a genotype-
phenotype map or a shadow on an X-ray). Each scientist or group
often wants to record their opinion, even though conflicting beliefs,
when entered into the database, will lead to conflicting data.

Online databases enable posting data in an unrestricted fashion,
whereas a registered user can post data that may conflict with the
data posted by other users. However, current online databases offer
no or very limited support for inconsistency, falling in general in
one of the following two categories: (a) they disallow (some or all)
conflicts altogether by allowing the administrator to enforce a set
of integrity constraints, or (b) they ignore inconsistencies, thus al-
lowing conflicting data to be entered into the system but they do not
provide the users with the tools to query conflicting data. Online
databases can clearly benefit from technology for uncertain data
[10, 11, 15, 17, 20, 21, 22, 29, 31, 25].

The presented system, called Ricolla (Resolve Inconsistencies
in a COLLAborative environment), combines uncertain databases
with the online database paradigm, where a central editor author-
ity is not present: It allows each user to post data, potentially in-
consistent with the data of other users, and overview inconsisten-
cies (in either the source data or the query results) in a compact,
easy-to-read representation. Furthermore, it allows the user to in-
dividually resolve inconsistencies, possibly disagreeing with other
users’ resolutions. This resolution happens in an “as-you-go" fash-
ion, allowing users to browse and query the data even before all
inconsistencies are resolved.

Combining the typical usage paradigm of online databases with
uncertain data though raises a yet-unaddressed scalability challenge:
The freedom to introduce multiple conflicting opinions may be ac-
tually exercised by the users, escalating the number of inconsisten-
cies in the database. We show that with the current state-of-the-art
in uncertain databases, as the number of conflicting opinions raises,
this leads quickly to rapid query processing performance degrada-
tion. Furthermore, the prior literature has not suggested an effective
Frontend for representing uncertain data.

Ricolla solves the scalability problem by tuning the data model,
query answering algorithms and user interface. The first ingredi-
ent to the solution is a novel data model, called ac-database, and a
corresponding generic report & update interface to capture and rep-

resent data conflicts. The model’s formal foundations draw from
the database theory of possible worlds: an ac-database instance is
a compact representation of a set of possible worlds. The litera-
ture contains several data models for representing sets of possible
worlds (known as data models for uncertain or incomplete data).
However, Ricolla’s data model differs from those in that it is tuned
for the requirements of scalability, while retaining the simplicity
needed by online databases. In the interest of simplicity, it avoids
the use of variables or complex provenance formulas in the data val-
ues representation, which, in contrast, are used in other data mod-
els, such as c-tables [21], ULDBs [15] (used in the Trio system [9])
and U-relations [10] (used in the MayBMS system [12]).

We show that Ricolla’s data representations are more compact
than other data models, such as ULDBs. The compact represen-
tation enables a specially-tuned query answering algorithm, which
maintains compactness and is therefore scalable for a large class
of queries, named join-consistent CQ=

1 . We show both analyti-
cally and experimentally that Ricolla is superior in inconsistency-
scalability to MayBMS and Trio, which incur an exponential blowup
in the data size. This superiority stems from the fact that, as op-
posed to Trio and MayBMS, which are universal tools meant to ac-
commodate any set of possible worlds, Ricolla exploits the fact that
the ac-database captures only the restricted class of possible worlds
which corresponds to our inconsistent online database setting.

Having shown that Ricolla’s data model and query answering
achieve scalability and simplicity for join-consistent CQ=

1 , we for-
mally show that this trade-off between scalability, simplicity and
query expressive power is effectively optimized in the sense that
any attempt to expand beyond join-consistent CQ=

1 will lead to
query results where the inconsistency representation will either have
to be non-compact or will be non-simple (as in c-tables) or will be
an approximation of the actual result.

Contributions. In summary, Ricolla makes the following con-
tributions: (a) an online database that captures conflicts, allowing
data query and update, while enabling personalized, “as-you-go"
conflict resolution, (b) a data model for capturing the conflicts in
a compact form, (c) a simple user interface, in direct correspon-
dence to the data model, for explaining data conflicts, aligned with
the interaction paradigm of online databases, (d) a formalization of
the “simplicity" and “compactness" properties, followed by proof
that Ricolla’s data model achieves a “sweet spot” in the tradeoff be-
tween simplicity, compactness and query expressive power for an
identified wide class of queries, and a corresponding scalable query
answering algorithm, (e) a proof that this sweet spot is optimized in
the sense that queries beyond this identified class necessarily lead
to a loss of compactness or simplicity, (f) an implementation of
the system on top of an RDBMS and (g) an analytical and an ex-
perimental performance comparison between Trio, MayBMS and
Ricolla, which show that Ricolla scales exponentially better than
both Trio and MayBMS to large numbers of data conflicts.

Organization. The paper is organized as follows: In Section 2
we present Ricolla through a sample use case and explain its archi-
tecture. In Sections 3-5 we present its components; its data model
(Section 3), the allowed user actions (Section 4) and the query an-
swering mechanism (Section 5). Its implementation is described in
Section 6 followed by a performance comparison against MayBMS
and Trio in Section 7. Finally, in Sections 8 and 9 we discuss re-
lated work and conclude, respectively. All proofs can be found in
the appendix.

2. SYSTEM OVERVIEW
In the following we provide an overview of Ricolla’s functionality
through a representative use case before describing its architecture.

Actor(ID, Name, Height, City, ZipCode)
Movie(ID, Title, ReleaseYear)
MovieActor(MovieID, ActorID)

Figure 1: Schema of Movie Ac-Database

Figure 2: Ac-tuple for Clint Eastwood

2.1 User Interaction Example
We consider a community of cinephiles, who want to create an

online database to collaboratively edit information about movies.
The database’s schema, designed by the community initiator, is
shown in Figure 1. For ease of exposition, it consists of 3 relations,
holding information on actors, movies and their relationships.

Modeling and querying conflicting data. Let us introduce Lara;
a Clint Eastwood fan. Lara has recently discovered that her favorite
actor is 1.85m tall. However, by inspecting the database, she finds
out that some other user has listed Clint’s height as 1.88m.1 In-
stead of replacing the other user’s value (which might be the correct
one) by her own and thus creating a biased database, Ricolla allows
her to simply augment the existing data with her own (conflicting)
opinions. Utilizing the system’s GUI, she can add as another pos-
sible height for Clint Eastwood, next to 1.88m, the value 1.85m.
Figure 2 depicts the tuple summarizing the information for Clint
Eastwood after Lara’s insertion as shown on Ricolla’s GUI. Such a
tuple is called an alternative-capturing tuple (in short ac-tuple). As
we will formally explain in Section 3, an ac-tuple captures different
ac-alternatives for the attribute values. For instance in Figure 2 it
shows the two possible alternatives for the height and two possi-
ble alternatives for the fan mailing addresses (which were entered
previously by other users). The ‘right’ and ‘wrong’ buttons next to
each ac-alternative are not part of the ac-tuple but are shown on the
GUI to allow resolution of conflicts, as we will explain later.

Apart from introducing (conflicting) data, Lara can also query
them, even when they contain conflicts. For example, utilizing Ri-
colla’s visual query builder, Lara formulates a query asking for all
actors with an address in Burbank and their movies. Assuming
that the system contains the two movies for Clint Eastwood shown
in Figure 4b, the query result is shown in Figure 5. The latter is
shown in the same way as the base data so that Lara can quickly
grasp the conflicts that affect her query. For instance, the query
result exhibits the information about the two possible values for
Clint’s height. By allowing users to query data before conflicts are
resolved, Ricolla supports “as-you-go" conflict resolution.

Resolving conflicts. After inserting Clint’s height and inspect-
ing the data through a query, Lara decides to resolve some of the
conflicts. She knows that out of the two mailing addresses listed for
Clint in Figure 2, the correct one is Burbank. She can reflect this
knowledge in the system by simply marking this ac-alternative as
right. This action, called a resolution action and carried out on the
same GUI that shows the conflicting data (by clicking on the green
‘right’ button next to the corresponding ac-alternative), allows her
to naturally reduce the number of conflicts.

Personalized Resolution. Note that a resolution action in Ricolla
affects by default only the particular user’s view of the commu-
nity database. For example, Harry, another movie fan, would still

1Our running example employs real values found on the web at
the time of writing. For instance, www.celebheights.com lists Clint
Eastwood’s height as 1.85m, while www.imdb.com lists it as 1.88m.

User’s View

SQL

StatementAc-Relation
Resolution

Policy

Community Members

Data
Insertion

Query Answering
Res. Policy

Specification

Resolution Policy Execution

Community

Ac-Database

Users’
Resolution

Policies

User
Ac-Database

Community Knowledge

BackEnd

Users’ ActionsUsers’ ActionsUsers’ Actions

Query
Builder

Resolution
Policy

Builder

Res. Action
Specification

FrontEnd

Data Viewer
(also allows Resolution Actions &

Insertions)

Ac-DML

Statement

Resolution

Action

Figure 3: Ricolla Architecture

see both of Clint’s addresses and could mark a different address as
right. In general, Ricolla allows users to record and maintain differ-
ing opinions and beliefs, in effect creating their own personalized
views of the community database. This is a major requirement es-
pecially in the sciences [32]. However, as we will see next, users
have also the option to collaborate with each other by adopting the
resolution actions carried out by their trusted collaborators or cer-
tain community authorities.

As-you-go Resolution. A notable feature of Ricolla’s resolution
actions is that they can be carried out not only on the base data but
also on query answers. In the latter case, the system automatically
translates the resolution actions on the query result to appropriate
resolution actions on the base data that have the same effect. This
allows community members to avoid resolving all conflicts eagerly
and instead lazily resolve only those that affect queries of interest.
In our running example, if Lara uses the query result in Figure 5 to
set Clint’s height to 1.85m, Ricolla will translate this choice to an
appropriate resolution on the Actor table on Lara’s behalf.

Bulk Resolution using Policies. After resolving the conflict on
Clint’s address, Lara decides to resolve the conflicts in the height
values of the actors. Given actors’ reputation of inflating their re-
ported heights, she decides to choose for every actor the smallest
among the heights listed. She could go to each actor tuple and
manually select the minimum height, but Ricolla alternatively al-
lows her to employ the resolution policy builder to write a policy
that automatically selects for every actor the minimum height.

Collaborative Resolution. Ricolla allows a user to collaborate
with her peers in conflict resolution, by specifying a resolution pol-
icy that takes into account other users’ resolution actions. For ex-
ample, Lara can write a policy specifying that she wants to use the
opinion of her friend Harry to resolve the conflicts in the heights.

2.2 System Architecture
Figure 3 depicts the architecture of the resulting system. The

Frontend, shown on the top, allows users to visually formulate
queries and resolution policies, inspect the data, insert new data
and carry out resolution actions. These actions are supported by

the Backend, shown on the bottom.
Dark boxes with rounded corners represent functions while rect-

angles correspond to internal data structures. Whenever users in-
sert data into the system through the Frontend, these are appended
to an append-only community ac-database. In parallel metadata
about the insertion (such as the user’s name and the timestamp of
the insertion) are stored in a separate storage area, containing the
user actions. Resolution actions carried out by the users are also
recorded in the same area. Essentially the community ac-database
and the user actions storage contain a description of all the relevant
edit history of the system. Each user can subsequently write one or
more resolution policies over these two storage areas to create her
own view of the community ac-database (depicted in Figure 3 as
User Ac-Database). This architecture enables simultaneously res-
olution personalization (by allowing every user to create her own
personalized view) and collaboration (by allowing policies to also
operate on other users’ actions). Ricolla is implemented on top of
a relational DBMS. Its implementation, including the algorithms
used for efficient query answering, are described in Section 6.

Although the current implementation supports a resolution pol-
icy language, designing resolution policies is an entire complemen-
tary area of research that includes among others the multitude of
recommendation algorithms suggested in the literature [8]. Their
investigation, as well as the description of the policy language, are
beyond the scope of this paper. For the purpose of this paper, a res-
olution policy is any algorithm that operates over the community
database and the users’ actions and creates a personalized view of
the community database. In the absence of any other policy, the
system uses the default policy, which removes from each user’s
view all ac-alternatives that she has marked as wrong.

3. DATA MODEL
A conflict resolution system should allow users or applications

to easily inspect the conflicts in the database. Therefore it should
capture not only the possible data items but also the relationships
between them (e.g., that two items are mutually exclusive, or that
they always have to co-exist) using a simple and compact structure.

To this end, Ricolla’s Frontend employs a special data model,
called ac-database, that exhibits those relationships in the data.
Note that researchers have already proposed a multitude of models
for representing the relationships between data items, commonly
referred to as data models for uncertain data. However, as we will
formally explain in Section 3.3, such models have been created as
general-purpose representations of sets of possible worlds and are
thus not optimally tailored for performance in online databases.

Next, we describe the ac-database, define its semantics and fi-
nally compare it to previously proposed models for uncertain data.

3.1 Definition
Our data model is structured around the notion of an alternative-

capturing tuple (in short ac-tuple); a special form of tuple that cap-
tures mutually exclusive information about a single object. Before
formally defining it, we first introduce it through an example.

Ac-Tuple Structure. Figure 4a shows an ac-tuple summarizing
the conflicting information on Clint Eastwood, entered by Lara and
other movie fans. It shows two possible heights (1.85m & 1.88m)
and two possible addresses (Burbank, 91522 & Carmel, 93921).

As seen in the example, an ac-tuple can be vertically partitioned
into a set of nested tables (4 in this case), called ac-fragments,
which cover part of the ac-tuple’s schema. Each ac-fragment row
represents a possible assignment of values for the set of attributes
in that ac-fragment and is called an ac-alternative. For instance,

(a) Actor

(b) Movie (c) MovieActor

Figure 4: Ac-database of movie community

Figure 5: Ac-tuples corresponding to movies of actors with a fan
mailing address in Burbank

the right-most ac-fragment, contains two ac-alternatives for Clint’s
city and zip code pair: either (Burbank, 91522) or (Carmel, 93921).

Note that by specifying the schema of the ac-fragments in an ac-
tuple, one can correlate or de-correlate the values within the tuple.
For instance, by creating a fragment that covers two attributes (e.g.,
city and zip code), a user can assign possible value pairs for both
the city and zip code, thus correlating the two attributes. On the
other hand, the separate fragment for height expresses the fact that
the value for height is independent of the value for address. Note
that one can decide how to correlate attribute values in a per-tuple
basis. This means that two ac-tuples within the same relation may
have ac-fragments of different schemas. Thus our data model dif-
fers from the standard nested relational data model [7]. As we will
explain in Section 3.3, the ac-tuple’s structure and its partitioning in
fragments guarantees that the data model stays compact and simple.

Correlating Ac-Tuples. An ac-relation is comprised of a set
of ac-tuples. The main question when considering sets of tuples
is whether they are correlated or not. Does each tuple represent
independent conflicts or are the conflicts represented by two dis-
tinct tuples related? It turns out that even if an ac-relation starts out
with uncorrelated ac-tuples, queries over it will yield correlated ac-
tuples. In our data model such correlations are depicted by marking
ac-fragments of different ac-tuples with the same marker, as exhib-
ited by the following example.

Consider the three ac-relations shown in Figure 4: the Actor re-
lation with the Clint Eastwood ac-tuple, the Movie relation contain-
ing two movies and the MovieActor relation stating that Clint East-
wood has played in both. If we ask for actors in Burbank and their
movies (which corresponds to joining these ac-relations, putting a
selection City=‘Burbank’ and projecting out some attributes), the
system returns the ac-relation shown in Figure 5. The query result
contains two ac-tuples corresponding to the two Clint Eastwood
movies. Note that the ac-fragment containing the height is the same
across both tuples and has the same color (yellow). Each color vi-
sualizes what we call a dependency marker or simply marker of an
ac-fragment (although the current implementation represents mark-
ers as colors, one can envision other visualizations, such as for in-

stance labels). Intuitively when two ac-fragments (across tuples)
are identical and share the same marker, they correspond to the ex-
act same object. Therefore if a certain ac-alternative turns out to be
true in one, the same ac-alternative will be true in the other. For in-
stance, in our example if actor Clint corresponding to the first tuple
has height 1.85m, the same will hold for the actor corresponding to
the second tuple, since they are the same person.

Marking fragments is more expressive than simply grouping tu-
ples by a set of attributes. Even though we can express the same
information as in Figure 5 without markers by simply grouping the
movies by the actor, this is not true in general. For example, if the
database contained another actor that played in the movie “Million
Dollar Baby", grouping the movies by actor would generate two tu-
ples for the particular movie (each appearing in a different group),
which would still have to be correlated through markers.

Optionality Flag. Finally, the data model can also express the
fact that a tuple might not exist in the answer of a query. This is
accomplished by assigning to an ac-tuple an optionality flag ‘?’.
For instance, in Figure 5 the two tuples might not exist in the an-
swer of the query asking for movies of Burbank actors (since Clint
might live in Carmel instead). Thus they are both marked as op-
tional. Similarly to ac-fragments, optionality flags can be marked to
express correlations. In the current implementation markers of op-
tionality flags are depicted visually as colors. For instance, the flags
of the two tuples in the previous example share the same marker
stating that if one does not exist (which will happen if Clint’s ad-
dress is not in Burbank) the other will also not exist. Generally, an
ac-tuple might have more than one optionality flags.

Formal Definitions. We proceed in a top-down fashion, defining
first the ac-database and then the components it is built from:

DEFINITION 3.1. AC-DATABASE & AC-RELATION: An ac-
database consists of a set of ac-relations, which are sets of ac-
tuples. Similarly to flat relations, each ac-relation has an asso-
ciated schema, which is a set of attributes.

DEFINITION 3.2. AC-TUPLE: An ac-tuple consists of a set of
ac-fragments. Every ac-tuple belongs to an ac-relation and it has
the schema of the relation. Finally, an ac-tuple might be assigned
a set of optionality flags (each of which might have a marker).

DEFINITION 3.3. AC-FRAGMENT & AC-ALTERNATIVE: An
ac-fragment is a relation whose schema is a subset of the schema
of the ac-tuple in which it appears and whose rows are called ac-
alternatives. The schemas of all ac-fragments of an ac-tuple form
a partition of the ac-tuple’s schema. Finally, each ac-fragment
may be also assigned a marker. Two ac-fragments can share the
same marker but only if they are identical (i.e., they have the same
schema and contain the same set of alternatives).

3.2 Possible World Semantics
The formal semantics build on the widely-followed definition of

possible worlds. Each ac-database (or ac-relation) represents a set
of possible flat databases (or flat relations). Each such flat database
(or relation) is a possible world. Intuitively a possible world of an
ac-relation can be created by picking for every ac-fragment in the
ac-tuples of the ac-relation exactly one of its ac-alternatives (while
respecting the optionality flags and the markers). Every such pick
of ac-alternatives for a given ac-tuple is called an interpretation of
that ac-tuple, defined below:

DEFINITION 3.4. AC-TUPLE INTERPRETATIONS: An interpre-
tation of an ac-tuple is a flat tuple created by mapping each frag-
ment of the tuple to a single alternative within that fragment.

For example, the ac-tuple of Figure 4a has the four interpreta-
tions shown in Figure 6.

#1: 1 Clint Eastwood 1.85 Burbank 91522
#2: 1 Clint Eastwood 1.85 Carmel 93921
#3: 1 Clint Eastwood 1.88 Burbank 91522
#4: 1 Clint Eastwood 1.88 Carmel 93921

Figure 6: Interpretations of the ac-tuple in Figure 4a

If fragments were not marked, then we could consider each ac-
tuple separately to create the possible worlds represented by the
ac-relation. If they are however marked, then decisions taken for a
fragment with a certain marker should be consistent across all ac-
tuples in which a fragment with the same marker appears. To this
end, we define the notion of compatible ac-tuple interpretations.

DEFINITION 3.5. COMPATIBLE AC-TUPLE INTERPRETATIONS:
Given two ac-tuples and one interpretation for each, we say that the
two interpretations are compatible if they were derived from the re-
spective ac-tuples by mapping each fragment of the ac-tuples with
the same marker to the same alternative.

Finally, we have to also take into account the optionality flags,
which denote that an ac-tuple may be absent. To this end, we define
a non-existence assignment, which specifies which optionality flags
will lead to non-existing tuples. As is the case with ac-tuples, in this
process we have to respect the markers of the optionality flags.

DEFINITION 3.6. NON-EXISTENCE ASSIGNMENT: Given a set
S of optionality flags, a non-existence assignment on S is a choice
function that assigns to each flag in S a boolean, such that all flags
with the same marker are assigned the same value.

Given the above definitions, we can now define the set of possi-
ble worlds represented by an ac-relation and an ac-database:

DEFINITION 3.7. POSSIBLE WORLDS OF AN AC-DATABASE:
An ac-relation represents all possible flat relations that can be pro-
duced by following two steps: First, pick a non-existence assign-
ment for the optionality flags in the ac-relation and second, for
every tuple in the ac-relation that does not have an optionality flag
selected by the non-existence assignment, pick exactly one of its in-
terpretations, such that all the interpretations chosen are pairwise
compatible. Finally, an ac-database represents all flat databases
that can be constructed by taking for each ac-relation in the ac-
database one of the possible relational instances that it represents.

From now on we will use PWorlds(I) to denote the possible
worlds represented by an ac-database or ac-relation I .

3.3 Comparison to other data models
Representing sets of possible worlds has been a long-studied

problem. Researchers have proposed many data models for cap-
turing sets of possible worlds, the most influential ones being Lip-
ski’s v-tables and c-tables [21]. The problem has gained traction
again recently in uncertain and incomplete databases. This led to
new data models, such as Uncertainty-Lineage Databases (ULDBs)
[15] (proposed in the context of the Trio system [9]), World-Set De-
compositions (WSDs) [11] and U-relations [10] (both designed for
the MayBMS system [12]) and semiring-annotated relations [20].
The same problem has also been studied in the context of proba-
bilistic databases [17, 22, 31, 29, 25]. However, most models have

been created as general-purpose representations and are not opti-
mally tailored for online databases, whose scalability and interface
needs place two unique requirements on the data model: simplic-
ity and compactness. This led us to the design of the ac-database,
which, as shown next, satisfies both requirements.

Simplicity. In online databases, it is important for a data model
instance, and especially conflicts, to be visualized effectively and
intuitively. An ac-database shows correlations between data at a
glance (through markers) without the need for any further com-
putation. In contrast, existing approaches fall in two categories
w.r.t. simplicity. The first category consists of data models that em-
ploy variables and/or complex provenance formulas (or some other
equivalent mechanism that requires reasoning) to capture correla-
tions in the data. As some studies [26, 28]2 suggest, the use of
variables makes them hard for users to understand. For instance,
ULDBs annotate tuples with provenance formulas. Understanding
whether two flat tuples can co-exist in a possible world requires
parsing and reasoning on those formulas. Similarly for c-tables, U-
relations, as well as various data models introduced in the context
of probabilistic database systems, such as PrDB [29] (where the
correlations are captured through probabilistic graphical models),
Orion [31] (which keeps the “history" of each tuple) and SPROUT
[25] (which captures correlations through boolean formulas). The
second category consists of data models that were designed as stor-
age models and not for a user interface. Representatives of this cat-
egory include WSDs and U-relations which, having been built with
efficient query evaluation in mind, decompose a single relation into
multiple relations. While simplicity is in general subjective, it can
be argued that avoiding variables and decomposition as done by ac-
relations clearly improves intuitiveness.

Compactness. To prevent information overload, a data model
should effectively summarize a set of possible worlds. Comparison
of different data models in terms of compactness is not straight-
forward, as they generally employ different structures. To facili-
tate this comparison, we pick a metric, that is on one hand flexible
enough to apply to different models and on the other hand provides
an obvious quantitative indication of their compactness. Given an
instance of any data model, we define its size to be the number
of data values (i.e., cells) that it contains. For instance, the ac-
tuple about Clint in Figure 4a contains 8 values and thus is of size
8. Given two instances, the one with smaller size is referred to as
more compact. Note that in the interest of uniformity, our metric
ignores variables and provenance formulas, which are present in
other models such as ULDBs, c-tables and U-relations. However,
in practice these constructs also increase the size of the representa-
tion and therefore reduce compactness.

It turns out that, according to the metric, an ac-database can be
exponentially more compact than a ULDB in representing the same
set of possible worlds. Intuitively, this happens because ULDBs do
not employ fragments and thus store all possible interpretations of
an ac-tuple (which, as we have explained above, corresponds to
taking the cartesian product of the ac-fragments). For instance, a
ULDB representing the set of possible worlds corresponding to the
ac-tuple in Figure 4a will be similar to Figure 6 and will therefore
have a size of 20, instead of 8 which is the case for the ac-database.
In [10], it was noted that U-relations can also be exponentially more
succinct than ULDBs for similar reasons.

THEOREM 3.8. COMPACTNESS: For any set of possible worlds
SPW that can be represented as an ac-database, there exists an ac-
2References borrowed from [27].

database representation that is at least as compact as any ULDB
representation of SPW .

c-tables and U-relations offer a more compact representation than
ac-databases, if variables and formulas do not count on the metric.
This is the result of using formulas to control the appearance of
data values.

To conclude, previously proposed data models have placed a
higher emphasis on expressive power and storage efficiency than
suitability for visualization and user interaction. For instance, U-
relations, WSDs and ULDBs are all complete (i.e., they can rep-
resent all finite sets of possible worlds). For the problem of user-
guided collaborative inconsistency resolution the ac-database, while
non-complete, is expressive enough while also being compact and
intuitive. The need for non-complete but intuitive data models has
also been recognized in [27]. Finally, note that the ac-database is
used to drive Ricolla’s Frontend, including conflict visualization
and user interaction. Existing data models could still be used at
the Backend for storage (although, as our experiments in Section 7
show, these may introduce exponential overhead, which led us to
the design of our own scalable Backend, described in Section 6).

4. ACTIONS
Utilizing an interface driven by the ac-database model, Ricolla

allows users to both model conflicting data and subsequently re-
solve the conflicts. These tasks are supported by Ricolla’s insertion
actions and resolution actions, respectively, as described below.

4.1 Insertion Actions
A user models conflicting data by carrying out insertion actions

directly on the interface (denoted as “Data Viewer" in Figure 3).
Two types of insertions are allowed. If the user wants to simply ex-
press an additional opinion about an existing object, she can insert
an alternative in an ac-fragment of an existing ac-tuple. If instead
she wants to introduce information about a new object, she can in-
sert a new ac-tuple. Since every ac-tuple might have a different
schema, at the time of the ac-tuple’s creation, the user has to spec-
ify how it is going to be partitioned into ac-fragments. This action
does not have to be final. A user can still merge or split fragments
after the creation of an ac-tuple. However, this can only be done if
both fragments have a single alternative. Once a fragment contains
at least two alternatives, it cannot be merged or split anymore.

4.2 Resolution Actions
Apart from modeling conflicts, users should be able to also re-

solve them (which conceptually corresponds to removing some of
the conflicting opinions). In an ac-database a single conflicting
opinion is modelled by a single ac-alternative. Thus, to offer the
finest level of granularity in resolving conflicts, a conflict reso-
lution system should allow the users to reason on individual ac-
alternatives. In Ricolla this is accomplished through resolution ac-
tions, which are of the following two types:

• Mark an ac-alternative as wrong. This corresponds intuitively
to removing (i.e., deleting) the ac-alternative. This action allows
users to partially resolve a conflict even when they do not have
the knowledge to fully resolve it. For instance, in our running
example, if Clint was listed with 3 mailing addresses, in Carmel,
Burbank and Paris, a user could restrict the conflicting values
by removing Paris, even if she could not decide between Carmel
and Burbank. On the other hand, when she can fully resolve a
conflict, she can carry out the second type of resolution action:

• Mark an ac-alternative as right. This corresponds to marking all
remaining ac-alternatives within the same ac-fragment as wrong.
As such it can be simulated by a set of ‘mark wrong’ actions.
However to facilitate faster resolution, Ricolla offers it conve-
niently as a separate action. Note that this action specifies that
an ac-alternative is right only w.r.t. the other ac-alternatives cur-
rently in the same ac-fragment. It will not remain right if addi-
tional ac-alternatives are added to the fragment. However users
can still ask the system to consider an ac-alternative as always
right (even under updates to the ac-fragment) by formulating an
appropriate resolution policy (described below).

Both types of actions can be carried out directly on the interface
corresponding to Ricolla’s data model (by clicking on the ‘right’
or ‘wrong’ button next to an ac-alternative). This simplicity is not
a coincidence but one of the requirements set when designing the
data model. To allow easy resolution, we made sure that each con-
flict corresponds to a separate entity (i.e., the ac-alternative) with
associated actionable items w.r.t. resolution. Other data models
(such as those discussed in Section 3.3), do not satisfy this require-
ment, as conflicts are hidden within provenance formulas or vari-
ables and the possible ways to resolve them are far from obvious.

Since answers to queries can also be represented in Ricolla’s data
model 3, users can carry out resolution actions not only on the base
data but also on the query results. This accommodates all those
users that access the community data through queries and want to
focus only on the conflicts that directly affect their applications.
Each resolution action carried out on the query result is then auto-
matically translated to a set of resolution actions on the base data
with the same effect. This is accomplished by adopting techniques
developed for the classical view update problem [14].

Note that although resolution actions conceptually correspond to
deletions, they are not implemented as such. Allowing all users to
remove alternatives from the community ac-database would violate
Ricolla’s requirement of personalized conflict resolution: Each user
should be able to resolve conflicts to her liking, without affecting
the other users’ view of the data.

To satisfy this requirement, resolution actions do not directly af-
fect the community database. Instead they are recorded as annota-
tions in a special ‘User Actions’ table attached to each alternative.
This table stores the users that have marked the alternative as wrong
together with the timestamp of the actions.4 Subsequently, each
user can write a resolution policy over both the ac-database and
the ‘User Actions’ tables to create her own view of the database,
on which her queries are evaluated. For the purpose of this pa-
per, a resolution policy is any algorithm that takes as input the
ac-database and the ’User Actions’ tables and returns a view of
the ac-database. In the absence of an explicitly defined policy, Ri-
colla uses the default policy, which removes from each user’s view
the alternatives that she has marked as wrong, thus implementing
the expected semantics of resolution actions. However, using an
expressive policy language, she can express other policies to see
the entire community database or adopt resolution actions of her
friends. This architecture in which resolutions actions are stored
as annotations that can be accessed by resolution policies, enables
users to decide independently which community data they see.

5. QUERY ANSWERING
3We will present this result together with the exact class of queries
for which it holds in Section 5.
4The ‘User Actions’ table of an ac-alternative also contains a tuple
for the user that inserted the alternative. This information might
later be used by resolution policies as we will explain next.

The resolve-as-you-go requirement of Ricolla dictates that users
can get the answers to their queries even when the system contains
conflicting data. Prior work, referred to as consistent query answer-
ing (see Section 8), suggests to return only the answers that are
consistent w.r.t. the set of constraints expressed over the database
schema. In contrast, Ricolla follows the approach taken by works
on uncertain data [15, 11] and returns to the user all non-yet-resolved
inconsistent data, pertaining to the query. The user may then re-
solve some of the inconsistencies in the query answer.

In this spirit, the query result is the set of all possible query an-
swers. The possible query answering semantics are typical in works
on uncertain data [15, 11]. In the case of Ricolla, they are formally
defined as follows. In the following we assume bag semantics.

DEFINITION 5.1. POSSIBLE ANSWERS: Given a query Q and
an ac-database I , the possible answers toQ over I is the following
set of possible worlds (over a single relation):

PAnswersQ(I) = {Q(DB)|DB ∈ PWorlds(I)}

Currently Ricolla supports queries out of the class CQ of con-
junctive queries (i.e., select-project-join queries). If the query does
not contain self joins and there is no uncertainty in the ac-database
on the join attributes (typically the primary keys and foreign keys),
then we call this a join-consistent CQ=

1 query. For join-consistent
CQ=

1 queries, Ricolla returns an ac-relation that precisely encodes
their possible answers. This is in general not possible for queries
that fall outside this class, i.e. their possible answers may not be
representable as an ac-relation. Therefore, Ricolla answers such
queries by returning an ac-relation that approximates their possible
answers. Towards formalizing these statements, we start by defin-
ing the join attributes of a schema, which will in turn help us define
the class of join-consistent CQ=

1 queries.

DEFINITION 5.2. JOIN ATTRIBUTES: Given an ac-database
schema S, the set of join attributes is the set of attributes which
are allowed to participate in query joins.

As is well known, join attributes are typically primary keys and
foreign keys. For our purposes it does not matter which exact pairs
of attributes are going to be joined together but rather whether an at-
tribute can appear in a join on not. Given a set of join attributes over
a schema, an ac-database over the same schema is join-consistent
if it does not have uncertainty in the value of the join attributes.

DEFINITION 5.3. JOIN-CONSISTENT AC-DATABASE: An ac-
database I over schema S is said to be Join-Consistent w.r.t. a set
of join attributes over S, if for every ac-tuple in I all join attributes
of the corresponding relation appear within a single fragment that
has a single ac-alternative.

For instance, in our running example we expect the users of
the system to formulate queries joining on movie IDs and actor
IDs. Therefore we consider as the set of join attributes the set J =
{Movie.ID, Actor.ID, MovieActor.MovieID, MovieActor.ActorID}.
The ac-database of Figure 4 is join-consistent w.r.t. J as it does not
contain multiple values for any of the join attributes. For example,
the ac-tuples in relation Movie contain only a single possible value
for the movie ID (which is a join attribute).

Next we define the class of join-consistent CQ=
1 queries. These

are CQ queries that (a) contain joins only on the join attributes and
(b) do not contain self-joins.

DEFINITION 5.4. JOIN-CONSISTENT QUERY: A query Q ex-
pressed over an ac-database schema S is called Join-Consistent

πy (./)

Figure 7: A (non-join-consistent) query Q1 & instance I s.t.
PAnswersQ1(I) cannot be represented as an ac-relation

w.r.t. a set of join attributes over the same schema, if Q contains
joins only on the join attributes.

DEFINITION 5.5. CQ=
1 : The class CQ=

1 contains all select-
project-join relational algebra queries containing at most one in-
stance of each relation. Selections involve equalities between at-
tributes and constants.

Having defined the set of ac-databases and queries of interest, we
can now formulate the closure result, which proves that the result
of a join-consistent CQ=

1 query is an ac-relation:

THEOREM 5.6. CLOSURE: Let J be a set of join attributes,
Q a join-consistent (w.r.t. J) CQ=

1 query and I a join-consistent
(w.r.t. J) ac-database. Then the possible answers of Q over I can
be represented by an ac-relation, which we denote by Q(I).

This result raises the following question: Is there a subset of CQ
queries that is larger than join-consistent CQ=

1 and whose results
can still be described by ac-relations? It turns out that this is not
the case for any straightforward extension of CQ. In particular, if
we relax the restriction on either join-consistency or the absence of
self-joins, we can find an ac-database I and a query Q s.t. the pos-
sible answers to Q over I cannot be represented as an ac-relation.

Figure 7 shows such a query Q1 and ac-database I . It is easy
to see that the set of the possible answers to Q1 over I consists
of the two possible worlds p1 = {〈t1〉, 〈t2〉} and p2 = {〈t3〉}.
Assume that we can represent PAnswersQ1(I) as an ac-relation
R. Since p1 consists of two tuples, the ac-relation R has to contain
at least two ac-tuples (as an ac-tuple can give rise to at most one
tuple in a possible world). The first ac-tuple will contain t1 as an
alternative and the second will contain t2. Moreover, R cannot
contain additional ac-tuples as that would lead to a possible world
with more than two tuples. Finally, since p2 contains a single tuple,
one of the ac-tuples in R has to have an optionality flag. There are
two possibilities: If only a single tuple (let’s say the one that has
t1 as an alternative) has an optionality flag, then R will also model
the possible world {〈t2〉}. If on the other hand, both ac-tuples
have an optionality flag, then R will also model the empty possible
world. Both possibilities correspond to contradictions, since we
have assumed that R precisely models PAnswersQ1(I). Hence
we have proven that the possible answers to a non-join-consistent
query cannot in general be represented as an ac-relation.

This result however raises another important question: Since
ac-relations cannot precisely represent the results of arbitrary CQ
queries, should researchers instead look for another data model,
which precisely captures the possible answers of CQ queries? The
following theorem shows that such an effort would be futile, since
the possible answers to CQ queries over an ac-database do not fall
within a restricted class of possible worlds. Instead they can be an
arbitrary finite set of possible worlds (over a single relation), requir-
ing thus powerful and complex data models as the ones discussed in

Section 3.3. In that sense, the combination of the ac-database data
model with join-consistent CQ=

1 queries is an optimized tradeoff
between expressiveness and data model simplicity. The next more
expressive trade-off point is data models that can represent every
finite set of possible worlds (a.k.a. as complete data models).

THEOREM 5.7. For every finite set P of possible worlds over a
single relation, there exists an ac-database instance I and a CQ
query Q such that PAnswersQ(I) = P .

This can be shown by proving that every U-relation (which is a
complete model) can be modelled as the result of a CQ query over
some ac-database instance (proof in the appendix).

Given the futility of attempting to enlarge the ac-database model
without sacrificing simplicity, we enabled Ricolla to answer CQ
queries that fall outside the class of join-consistent CQ=

1 by ap-
proximating their possible answers.

Approximating the query answer. In approximating the an-
swer of an arbitrary CQ query as an ac-relation I , we have in gen-
eral two options: I either over-approximates or under-approximates
the actual set P of worlds (i.e. I represents a superset or subset of
P , respectively). For Ricolla we chose over-approximation, as it
allows users to see all actual worlds (potentially with additional
false positives). The effect on the Frontend is that it may not de-
pict some correlations between ac-tuples, possibly suggesting more
resolution actions than needed (resolving an ac-fragment actually
resolves all fragments correlated with it). However, the Frontend is
guaranteed to never miss a possible tuple (which would have hap-
pened for under-approximation).

DEFINITION 5.8. APPROXIMATION: Given a finite set of pos-
sible worlds P over a single relation, an approximation of P is an
ac-relation I such that P ⊆ PWorlds(I).

However approximations can be arbitrarily large. To this end,
we define the notion of a best approximation, which is an approx-
imation with the minimum number of ac-tuples. For the purposes
of the following theorem we define the cardinality of an ac-relation
I (denoted by |I|) to be the number of ac-tuples in I .

DEFINITION 5.9. BEST APPROXIMATION: An approximation
I of a finite set of possible worlds P over a single relation is a best
approximation of P iff |I| ≤ |I ′| for every approximation I ′ of P .

Unfortunately, the discovery of the best approximation is im-
practical, since computing it is NP-hard:

THEOREM 5.10. BEST APPROXIMATION HARDNESS: Com-
puting the best approximation of a finite set of possible worlds rep-
resented as a U-relation is NP-hard.

This can be shown through a reduction from MAX-2-SAT (proof
in the appendix). Note that in the theorem the set of possible worlds
that we want to approximate is given as a U-relation. This is made
to ensure that the input to the ‘best approximation’ problem is a
compact representation of a set of possible worlds and not some
arbitrarily large representation (e.g., an enumeration of the set of
possible worlds) which would have led to an artificially low com-
plexity.

Given the intractability of approximating a query answer, Ri-
colla utilizes a heuristic to compute some (non-best) approxima-
tion of the answer for all CQ queries that fall outside the class of
join-consistent CQ=

1 . Of course, CQ=
1 queries are still answered

exactly by the same algorithm, which degrades gracefully when

tid fid aid ID Name Height City Zip
1 1 1 1 ε ε ε ε
1 2 1 ε Clint... ε ε ε
1 3 1 ε ε 1.85 ε ε
1 3 2 ε ε 1.88 ε ε
1 4 1 ε ε ε Burbank 91522
1 4 2 ε ε ε Carmel 93921

(a) Actord

tid optid

(b) Actoropt

Figure 8: Flat representation of the ac-tuple in Figure 4a

applied to queries outside the CQ=
1 class. The query answering

algorithm is described in Section 6.2.
Note that one can also envision other notions of best approxima-

tion, such as an approximation that is minimal in the set of possible
worlds it represents or one that is most compact in the number of
data values it contains (as defined in Section 3.3). We plan to inves-
tigate alternative notions of best approximation in our future work.

6. IMPLEMENTATION
In a first iteration we implemented Ricolla on top of an RDBMS.

The benefits from this approach are twofold: First, it leverages the
query answering and optimization capabilities offered by RDBMSs.
Second, it allows enterprises hosting Ricolla to reuse their existing
infrastructure. As part of our future work, we plan to investigate
alternative techniques of implementing the system.

The system consists of 3 main components described next: a)
storing an ac-database as a flat database, called flattening, b) re-
trieving an ac-database from its flat representation, called nesting,
and c) answering queries.

6.1 Flattening & Nesting
Storing an ac-database in an RDBMS requires a procedure for

converting each ac-relation to one or more flat relations. This pro-
cedure, called flattening, should be invertible to ensure that an ac-
relation can be nested back from its flat representation.

A straightforward approach of flattening an ac-relation is to store
for each ac-tuple its interpretations, as defined in Section 3.2 (aug-
mented with information about the schema of each ac-tuple). How-
ever, creating the interpretations of an ac-tuple involves taking the
cartesian product of its ac-fragments. Hence this approach leads to
an exponential blowup in the space requirements of the flat rela-
tion, compared to the ac-relation it represents. This not only wastes
memory resources but it also increases the time required to retrieve
an ac-relation from its flat representation, since the nesting algo-
rithm has to at least scan all tuples stored in the RDBMS.

To avoid this problem, we designed a flat representation that is
linear in the size of the original ac-database. Each ac-relation R
is converted to two flat relations: a data relation Rd storing the
ac-alternatives of R’s ac-tuples and an optionality relation Ropt
holding their optionality flags.

Due to lack of space, we demonstrate the flattening procedure
through an example. Figure 8 shows the flat representation of the
Clint Eastwood ac-tuple of Figure 4a. The data relation, shown
in Figure 8a, stores one flat tuple per ac-alternative. The special
ε values are used to pad the ac-alternatives to fit the schema of an
ac-relation (since in general an alternative covers only a subset of
this schema). For each alternative Ricolla keeps three identifiers: a
tuple identifier (tid), a fragment identifier (fid) and an identifier of

Set of Possible Worlds Δ Set Of Possible Worlds Δ’

Ac-Database Instance IA Ac-Database Instance IA’

Flat Database Instance IF Flat Database Instance IF’

PWorlds PWorlds

Flatten Nest

PAnswersQ

FlatAnswersQ

Query Answering Semantics

Query Answering Implementation

Q

Figure 9: Query Answering Semantics and Implementation

the alternative within the fragment (aid). These serve two purposes:
First, they capture the structure of each ac-tuple, thus allowing the
system to reconstruct the original ac-relation from the stored ac-
alternatives. Second, they (the fragment ids in particular) are used
to capture the markers of ac-fragments; i.e., two fragments with the
same marker share the same fid value. The only information not
stored in the data relation are the ac-tuple optionality flags. These
are kept in a separate optionality relation (shown in Figure 8b) stor-
ing for each ac-tuple (represented by its tid) the identifiers of all its
optionality flags. Similarly to ac-fragments, the marker of an op-
tionality flag is represented by its id. In other words, two flags with
the same marker share the same id.

6.2 Answering Queries
In a two-layered system like ours where we have two data mod-

els (one for the Frontend and another for the Backend), query an-
swering can be generally accomplished in two ways: By operating
either on the Frontend data model (i.e., on the ac-database) or on
the Backend model (i.e., on its flat representation). However run-
ning the query answering algorithm on the ac-database involves
first recreating the entire ac-database from its flat representation.
Therefore we opted for the second approach: A query Qac over
the ac-database is rewritten to a set of queries that can be executed
inside the RDBMS over the flat representation of the ac-database.
In this way, we avoid nesting the entire database and in parallel
we leverage the query answering and optimization capabilities of
RDBMSs. Subsequently the flat query results (which correspond
to the flat representation of the possible answers toQac) are passed
as input to the nesting algorithm to construct an ac-database rep-
resenting the possible answers to Qac. Figure 9 shows both the
semantics of query answering (in terms of possible worlds as ex-
plained in Section 5) and its actual implementation.

We describe next the rewriting procedure that translates a CQ
query over an ac-database to two queries over its flat representa-
tion, returning the data and optionality relation. To create these flat
queries, Ricolla appropriately rewrites each relational algebra oper-
ator of the original query. Figures 10a and 10b show the operator-
level rewritings used to create the queries returning the data rela-
tion and the optionality relation, respectively. The join operator is
special in that it is treated differently for the special type of joins
that appear in join-consistent CQ=

1 queries and for arbitrary joins.
Based on the results of Section 5, showing that we cannot represent
the query results in the second case as an ac-relation, the rewrit-
ing yields an ac-relation that represents in the first case the precise
answers, while in the second only an approximation of them.5

A projection on an ac-relation translates to a projection on the
5The rewritings use the generalized projection operator of [30],
which in addition to attributes can also output function results.

πa1,...,an(R) πtid,fid,aid,a1,...,anσa1 6=ε∨...∨an 6=ε(Rd)
σa=c(R) σa=c∨a=ε(Rd)
Join-consistent CQ=

1

R ./R.ai=S.aj S πnt(tidR,tidS),padRd ./tid=tidR K∪
πnt(tidR,tidS),padSd ./tid=tidS K

Arbitrary CQ

R ./R.ai=S.aj S πnt(tidR,tidS),padσai=εRd ./tid=tidR K∪
πnt(tidR,tidS),padσaj=εSd ./tid=tidS K∪
πnt(tidR,tidS),nf,padRd ./Rd.ai=Sd.aj

σaj 6=ε(Sd)
(a) Rewriting for the data relation

πa1,...,an(R) Ropt
σa=c(R) δπtid,nopt(fid)σa6=c∧a6=ε(Rd) ∪Ropt
Join-consistent CQ=

1

R ./R.ai=S.aj S πnt(tidR,tidS),optid(Ropt ./tid=tidR K)∪
πnt(tidR,tidS),optid(Sopt ./tid=tidS K)

Arbitrary CQ

R ./R.ai=S.aj S πnt(tidR,tidS),nopt′(K)
(b) Rewriting for the optionality relation

where K : δπRd.tid as tidR,Sd.tid as tidS (
Rd ./Rd.ai=Sd.aj σSd.aj 6=ε(Sd))

Figure 10: Rewriting of relational algebra operators forCQ queries

data relation and a removal of all flat tuples that correspond to al-
ternatives that do not contain any of the attributes in the projection
list. Moreover, a projection does not affect the optionality relation,
since projecting out columns of an ac-relation cannot create new
optionality flags or remove existing ones.

Selection is slightly more involved. Applying a selection on an
attribute a with a value c keeps only those ac-alternatives with a
value c for a. To implement these semantics, the rewriting of the
selection operator selects from the data relation all flat tuples that
have a value c or ε for a. The latter correspond to ac-alternatives
that do not have a in their schema. Moreover, a selection may also
introduce new optionality flags. In particular, whenever an input
ac-tuple contains an alternative b not satisfying the selection con-
dition, the corresponding output ac-tuple has to be marked as op-
tional. The reason is that in one possible answer (the one produced
by executing the query against the possible world in which b ex-
ists) this tuple will not exist. Therefore, as shown in Figure 10b,
the rewriting of the selection operator for the optionality relation
creates new optionality flags for ac-tuples that contain alternatives
not satisfying the selection condition. The identifier of these flags
is created by a function nopt (standing for new optid) that generates
fresh optionality ids based on the fid of the fragment that contains
such an alternative. This happens because if in the query input two
fragments with the same marker contain an alternative that does not
satisfy the selection condition, in every possible answer one tuple
will exist iff the other exists. Thus they have to be assigned option-
ality flags with the same marker (and hence with the same id).

Finally, for the join, we distinguish two cases: Joins on attributes
of different relations that do not contain uncertainty (i.e., joins that
appear in join-consistent CQ=

1 queries) and arbitrary joins.
In the first case, the lack of uncertainty on the join attributes

means that for any two ac-tuples t1 and t2, all interpretations of t1
will join with all interpretations of t2. Therefore to create the re-
sult of the join between t1 and t2 it suffices to create a new ac-tuple
that contains the concatenation of the fragments of the original ac-
tuples. The new ac-tuple also inherits the optionality flags of the
two input tuples. The rewriting of the join operator for the data

relation shown in Figure 10a implements these semantics as fol-
lows: The intermediate relation K (shown at the bottom of Figure
10) computes pairs of identifiers of tuples that agree on the join
attributes. Subsequently, for each such pair the rewriting retrieves
the alternatives of the corresponding tuples and pads them with ε
values to make them conform to the schema of the join result. The
function nt creates a fresh tuple id for each pair of joined input
tuples. Finally, the rewriting for the optionality relation shown in
Figure 10b employs relationK to copy the optionality flags of each
input tuple to all output tuples that it helped produce.

For arbitrary joins, uncertainty on the join attributes means that
only some of the interpretations of t1 and t2 will join with each
other. To find the ones that do, Ricolla computes the join between
the fragment of t1 that contains the join attributes and the corre-
sponding fragment of t2. The remaining fragments of both tuples
(i.e., the ones that do not contain join attributes) carry over un-
modified to the output ac-tuple as in the case of restricted joins.
Moreover, since only some of the interpretations of the input tuples
join with each other, each ac-tuple in the join output is marked as
optional with a fresh optionality flag (produced by function nopt’).

Using the above operator-level rewritings, Ricolla translates any
CQ query Qac over an ac-database schema to two queries Qd and
Qopt over the corresponding flat schema, where Qd computes the
ac-tuples and Qopt their optionality flags. The queries are guar-
anteed to compute the ac-database that represents the possible an-
swers to Qac (in the case of join-consistent CQ=

1 queries) or an
(over-)approximation of them (in the case of arbitraryCQ queries).

Resolution policies and query answering. Recall that queries
do not operate directly on the ac-database but on the result of a
user-defined resolution policy. Thus to answer a query, Ricolla first
applies the policy (which can be any algorithm, that given the flat
representation of the ac-database and the ‘User Actions’ tables re-
turns a view over it) and then runs the query answering algorithm
on its result. However, this requires first materializing the entire
policy result. To avoid this overhead, Ricolla also supports policies
that are relational views. In this case, the user query is composed
with the SQL view corresponding to the policy, to create on-the-fly
only the part of the policy output relevant to the user query.

7. EXPERIMENTAL EVALUATION
As explained in Section 3.3, Ricolla employs the ac-database as

its Frontend data model to achieve a simple and compact repre-
sentation of conflicting data suitable for an online database. At its
Backend it could conceptually employ any system for representing
sets of possible worlds. However, we show next experimentally
that it is still preferable to use a custom Backend (described above)
specifically tailored to the storage of an ac-database, as existing
systems do not scale with the number of conflicts in the online
database. In particular, we show that Ricolla scales exponentially
better w.r.t. uncertainty than two recent systems for uncertain data.

The compared systems. We compared Ricolla’s Backend against
two recent research prototypes for uncertain data: MayBMS [12]
and Trio [9]. Trio is based on the ULDB data model [15], which
(see Section 3.3) stores for each ac-tuple all its possible interpreta-
tions (i.e., the cartesian product of the ac-tuple’s fragments). This
leads to a blowup of the size of the base data which is exponen-
tial in the number of attributes in the base relations. MayBMS’
data model, called U-relations [10], avoids this issue by allowing
the administrator to manually vertically partition an ac-relation into
multiple flat relations. Each flat relation Ui has intuitively the same
effect as an ac-fragment; it still stores the possible interpretations
of a tuple t but in this case only for the attributes of t that appear in
Ui’s schema. Thus U-relations with vertical decomposition avoid

Actor(ID, Name, Sex, BirthDate, Height, Weight)
Film(ID, Name, InitialReleaseDate)
Performance(ID, ActorID, FilmID, Character)

(a) Data Set Schema

Relation Size (in tuples)
Actor 10,000 tuples
Performance 30,635 tuples
Film 25,223 tuples

(b) Data Set Size

Figure 11: Data Set Properties

Q1: Return all actors
SELECT Name, BirthDate, Sex, Height, Weight
FROM Actor

Q2: Return female actors (Selectivity 17%)
SELECT Name, Sex, BirthDate, Height, Weight
FROM Actor
WHERE Sex = ‘Female’

Q3: Return info on Charlize Theron (Selectivity 0.01%)
SELECT Name, Sex, BirthDate, Height, Weight
FROM Actor
WHERE Name = ‘Charlize Theron’

Q4: Return actors & characters played
SELECT Name, Character
FROM Actor A, Performance P
WHERE A.ID = P.ActorID

Q5: Return actors & their movies
SELECT Film, Name, Sex, BirthDate
FROM Actor A, Performance P, Film F
WHERE A.ID = P.ActorID AND F.ID = P.FilmID

Figure 12: Queries

the exponential blowup in the size of the base data when the data
are stored in the system. However, the exponential blowup still oc-
curs at query processing time, since the query answering algorithm
gradually merges vertical decompositions to eventually return a sin-
gle non-decomposed U-relation [10].

Data set and queries. To compare the systems, we used a mod-
ified version of our movie-community example based on real data
from Freebase [2]. From the latter we extracted a subset of actor
and movie data and converted them to relational data conforming
to a schema with relations Actor, Film and Performance (Perfor-
mance models the relationship between the other two relations).
The schema and size of the resulting dataset is shown in Figure 11.

On this dataset, we compared the execution times of five queries
Q1-Q5 shown in Figure 12. These queries were designed to (a) be
representative examples of queries encountered in an online database
and (b) cover the entire spectrum of constructs supported by our
query language (i.e., projections, selections and joins). Q1 returns
the entire Actor relation, while Q2 and Q3 return subsets of it with
increasing selectivity. Finally Q4 and Q5 join the Actor relation
with one and two other relations, respectively.

The experiments were conducted on a Virtual Machine running
Windows 7 with a 2.4GHz Intel Core i5 CPU and 1GB RAM with
the latest publicly available packaged versions of the systems avail-
able at the time of writing.6 Trio runs on Postgres 8.2.23 and
MayBMS is a modified version of Postgres 8.3.3. To avoid dis-
crepancies caused by different DBMSs, we ran Ricolla on the same

6There is also a source version of MayBMS available, which is
claimed to be more efficient than the packaged version that we
tested. However, we do not expect it to solve the scalability prob-
lems, since these are inherent in the system as we explained above.

0"
100"
200"
300"
400"
500"
600"
700"
800"
900"

1000"

Q1" Q2" Q3" Q4" Q5"

Time%(ms)%

Query%

Trio"

MayBMS"Single"
Rela;on"
MayBMS"Ver;cal"
Par;;oning"
Ricolla"

Figure 13: Query execution times in the absence of uncertainty

DBMS used by MayBMS. We report the time needed to execute
the SQL queries issued by each system and fetch the results, as re-
turned by Postgres. Note that this might be more than one SQL
query (e.g., in the case of Ricolla it is two SQL queries return-
ing the data and the optionality relations). Trio is the only system
in which we report the time to execute a modified version of the
SQL queries issued by the system. The reason is that Trio asks the
DBMS to order the results, so that they can be easily parsed by
the Frontend and grouped into Trio’s equivalent of ac-tuples. To
avoid penalizing Trio for Frontend processing (which has to hap-
pen also in the other systems), we measured the time of executing
the queries without the ORDER BY clause. All times are averages
over four executions with a warm cache of one execution.

Experiment 1: Performance in the absence of uncertainty.
As a baseline, we evaluated the performance of all three systems
in the absence of uncertainty. To this end, we imported the data
set in each system creating an uncertain database representing a
single possible world. In the case of Ricolla the import yielded ac-
tuples with a single ac-fragment containing a single ac-alternative.
Similarly for Trio. For MayBMS, since one can specify different
vertical decompositions, we used two data representations, corre-
sponding to the two extremes in the spectrum of decomposition.
The first implementation, called “MayBMS Single Relation" stored
the Actor relation as a single U-relation (similarly to Trio’s ULDB),
while the second, named “MayBMS Vertical Decomposition" de-
composed it into 6 U-relations (one per attribute). The Film and
Performance relations were stored in both cases as single U-relations.

Figure 13 shows the query execution times on each of the four re-
sulting databases: Trio, MayBMS Single Relation, MayBMS Ver-
tical Partitioning and Ricolla. All systems apart from MayBMS
Vertical Partitioning perform similarly, which shows that Ricolla
behaves like the state of the art in the absence of uncertainty. The
slowdown of MayBMS Vertical Partitioning is due to the overhead
of joining multiple partitions. For non-selective queries this over-
head becomes significant even when 4-5 columns are projected.

Experiment 2: Scaling with uncertainty. Since in an online
database, users are expected to exercise their freedom in introduc-
ing conflicting data, leading to a big amount of uncertainty, we next
evaluated how the systems scale w.r.t the number of conflicts in the
data. To this end, we augmented the Actor relation of the orig-
inal dataset D1 with random alternatives, thus creating five new
datasets D2, D4, D8, D16, D32 with increasing amounts of uncer-
tainty. To create a dataset Di, we added to each ac-tuple of Actor
in D1 an average of i ac-alternatives per attribute (apart from the
join attributes, shown underlined in Figure 11, which can contain
only one alternative). For instance, inD8, each Actor ac-tuple con-
tains 6 fragments (one for each attribute), each with an average of 8
alternatives (apart from the fragment of the join attribute ID which
contains a single alternative). Thus each Actor ac-tuple in Di has
on average i5 possible interpretations. Relations Film and Perfor-
mance were left unmodified.

0"
2000"
4000"
6000"
8000"

10000"
12000"
14000"
16000"
18000"
20000"

0" 10" 20" 30" 40"

Time%
(ms)%

Avg%#%of%alterna4ves%
per%a6ribute%

(a) Query Q1

0"
2000"
4000"
6000"
8000"

10000"
12000"
14000"
16000"
18000"
20000"

0" 10" 20" 30" 40"

Time%
(ms)%

Avg%#%of%alterna4ves%
per%a6ribute%

(b) Query Q2

0"
200"
400"
600"
800"

1000"
1200"
1400"
1600"
1800"

0" 10" 20" 30" 40"

Time%
(ms)%

Avg%#%of%alterna4ves%
per%a6ribute%

(c) Query Q3

0"

5000"

10000"

15000"

20000"

25000"

30000"

35000"

0" 10" 20" 30" 40"

Time%
(ms)%

Avg%#%of%alterna4ves%
per%a6ribute%

(d) Query Q5

0"
2000"
4000"
6000"
8000"
10000"
12000"
14000"

0" 5" 10" 15" 20" 25" 30" 35"

Time%
(ms)%

Avg%#%of%alterna4ves%
per%a6ribute%

Trio" MayBMS"Single"Rela8on" MayBMS"Ver8cal"Par88oning" Ricolla"

Figure 14: Query execution times under increasing uncertainty

Figure 14 shows how each system scales w.r.t. uncertainty for
four out of the five queries (due to lack space, we omitted Q4,
which behaves similarly to the other queries). Lines crossing the
top of each graph correspond to times exceeding the vertical scale.
Note that, even though we ran experiments up to 32 alternatives per
attribute to stress-test Ricolla, in most cases the difference in scal-
ability among systems becomes obvious even for small amounts of
uncertainty, such as two to four alternatives per attribute.

Trio and MayBMS Single Relation become impractical even for
a small number of conflicts, failing to scale beyond two alternatives
per attribute. This is the result of the exponential blowup in the
size of the base data explained above. In particular, in Di, for each
Actor ac-tuple, Trio and MayBMS Single Relation require i5 tuples
(as many as its interpretations), while Ricolla uses only 5 ∗ i + 1
(as many as the total number of alternatives in the ac-tuple). More
importantly, since the exponential blowup happens in the base data,
this exponential overhead exists for any query that is executed in
those systems (however selective this might be).

MayBMS Vertical Partitioning also exhibits an exponential be-
havior w.r.t. uncertainty but for selective queries (e.g., Q3 which
returns only a single ac-tuple) the rate of increase of the execution
time with uncertainty is much lower than Trio and MayBMS Sin-
gle Relation. The reason is that, in contrast to these approaches,
MayBMS Vertical Partitioning exhibits the exponential blowup in
the size of the query output and not in the size of the base data.

Experiment 3: Scaling with number of attributes in the query
result. In particular, the query output’s size for MayBMS Vertical
Partitioning is exponential in the number of attributes in the query’s
projection list. To verify this, we compared MayBMS Vertical Par-
titioning to Ricolla for modified versions of query Q1 in which we
varied the projection list from one to five attributes. Figure 15 show
the execution times of these queries on datasets Di, i ∈ {2, 4, 8}.
While MayBMS Vertical Partitioning behaves similarly to Ricolla
for one attribute, it does not scale to more than two attributes.

In summary, among all compared systems, only Ricolla scales

1"a$r"
2"a$r"
3"a$r"

5"a$r"
4"a$r"

0"

1000"

2000"

3000"

4000"

0" 2" 4" 6" 8"

Time%
(ms)%

Avg%#%of%alterna4ves%per%
a6ribute%

(a) Ricolla

1"a$r"

2"
a$r"

3"
a$r"

4"
a$r"

5"
a$r"

0"

1000"

2000"

3000"

4000"

0" 2" 4" 6" 8"

Time%
(ms)%

Avg%#%of%alterna4ves%per%
a6ribute%

(b) MayBMS Vertical Part.

Figure 15: Execution times for variants of Q1 with different pro-
jection lengths under increasing uncertainty

linearly with uncertainty in all cases; the other systems do not scale
even for four alternatives per attribute in most cases. This is based
on Ricolla’s data model and query answering algorithm, which in
tandem allow for a compact representation of both input and output
data. Recall though that Ricolla is tailored to only those sets of
possible worlds that can be easily explained to the user of an online
database, while Trio and MayBMS were built as general systems
allowing the representation of any finite set of possible worlds.

8. RELATED WORK
Researchers have looked at several aspects of the problem of

managing conflicting data:
Querying inconsistent data. Prior work on querying inconsis-

tent data [13, 18] (summarized in [16]) introduced the Consistent
Query Answering semantics. According to them, a query returns
only those tuples that exist in the query answer against all minimal
ways of resolving inconsistencies in the original database (known
as minimal repairs). Thus consistent query answering removes in-
consistencies from the answer, in contrast to Ricolla whose goal is
to show the conflicts so that users can inspect and resolve them.
Note that the consistent query answers can be inferred from Ri-
colla’s possible answers through a linear scan: They correspond to
ac-tuples with a single alternative in each fragment.

Modeling inconsistent data. Numerous works proposed data
models for uncertain data. However, as explained in Section 3.3,
these models are not suitable for the Frontend of an online database
as they trade simplicity and compactness for expressive power.

End-to-end systems for managing inconsistent data. Several
systems were proposed as attempts to solve the problem of incon-
sistent data management. However they cannot be used effectively
in our setting. ORCHESTRA [32] allows users to reconcile data in
a P2P system while allowing disagreement. However, disagree-
ment is only temporary, since after each reconciliation all non-
resolved conflicts are discarded. In contrast, Ricolla keeps and dis-
plays to the users all inconsistencies, until they can resolve them.
Other systems, such as HumMer [24] and Fusionplex [23] allow in-
consistency resolution in the context of data fusion. They provide
resolution policy languages but they lack a formally defined model
for displaying inconsistent data. Moreover they are designed for a
single user and are thus not applicable in collaborative scenarios.

Algorithms for resolving conflicts automatically. Several al-
gorithms have been proposed in complementary work, either in
the particular context of automatic conflict resolution (e.g., using a
trust network between users [19]) or in the broader context of rec-
ommendation systems (see survey in [8]). As explained in Section
4.2, these can be applied in Ricolla as resolution policies.

9. CONCLUSION

We have proposed Ricolla; an online database with built-in sup-
port for the management of data conflicts, whose viability is sup-
ported by analytical and experimental evaluation. While being for-
mally grounded on the existing theory on uncertain data, Ricolla
goes a step further than existing systems by incorporating a unique
combination of user interface, data model and query answering al-
gorithms specially tuned to the needs of an online database, which
leads to exponentially better scalability w.r.t. uncertainty.

10. REFERENCES
[1] Caspio Bridge. http://www.caspio.com/bridge/.
[2] Freebase. http://www.freebase.com/.
[3] Google Fusion Tables. http://www.google.com/fusiontables/.
[4] QuickBase. http://quickbase.intuit.com/.
[5] TrackVia. http://www.trackvia.com/.
[6] Zoho Creator. http://creator.zoho.com/.
[7] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases.

Addison-Wesley, 1995.
[8] G. Adomavicius and A. Tuzhilin. Toward the next generation of

recommender systems: a survey of the state-of-the-art and possible
extensions. IEEE TKDE, 17(6):734 – 749, 2005.

[9] P. Agrawal, O. Benjelloun, A. D. Sarma, C. Hayworth, S. U. Nabar,
T. Sugihara, and J. Widom. Trio: A system for data, uncertainty, and
lineage. In VLDB, pages 1151–1154, 2006.

[10] L. Antova, T. Jansen, C. Koch, and D. Olteanu. Fast and simple
relational processing of uncertain data. In ICDE, 2008.

[11] L. Antova, C. Koch, and D. Olteanu. 10^(10^6) worlds and beyond:
Efficient representation of incomplete information. In ICDE, 2007.

[12] L. Antova, C. Koch, D. Olteanu. MayBMS: Managing incomplete
information with probabilistic world-set decompositions. ICDE 2007.

[13] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers
in inconsistent databases. In PODS, 1999.

[14] F. Bancilhon and N. Spyratos. Update semantics of relational views.
ACM Trans. Database Syst., 6(4):557–575, 1981.

[15] O. Benjelloun, A. Sarma, A. Halevy, M. Theobald, and J. Widom.
Databases with uncertainty and lineage. VLDB J., 17(2), 2008.

[16] J. Chomicki. Consistent query answering. In ICDT, 2007.
[17] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic

databases. VLDB J., 16(4):523–544, 2007.
[18] A. Fuxman, E. Fazli, and R. J. Miller. Conquer: efficient

management of inconsistent databases. In SIGMOD, 2005.
[19] W. Gatterbauer and D. Suciu. Data conflict resolution using trust

mappings. In SIGMOD, pages 219–230, 2010.
[20] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.

In PODS, pages 31–40, 2007.
[21] T. Imieliński and W. Lipski, Jr. Incomplete information in relational

databases. J. ACM, 31(4):761–791, 1984.
[22] V. Lakshmanan, N. Leone, R. Ross, and V. Subrahmanian. Probview:

a flexible probabilistic database system. TODS, 22(3), 1997.
[23] A. Motro and P. Anokhin. Fusionplex: resolution of data

inconsistencies in the integration of heterogeneous information
sources. Inf. Fusion, 7(2):176–196, 2006.

[24] F. Naumann, A. Bilke, J. Bleiholder, and M. Weis. Data fusion in
three steps: Resolving schema, tuple, and value inconsistencies.
IEEE Data Eng. Bull., 29(2):21–31, 2006.

[25] D. Olteanu, J. Huang, and C. Koch. SPROUT: Lazy vs. eager query
plans for tuple-independent probabilistic databases. In ICDE, 2009.

[26] W. C. Purdy. A logic for natural language. Notre Dame Journal of
Formal Logic, 32(3):409–425, 1991.

[27] A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working
models for uncertain data. In ICDE, 2006.

[28] R. A. Schmidt. Relational grammars for knowledge representation.
In Variable-Free Semantics, pages 162–180. 2000.

[29] P. Sen, A. Deshpande, L. Getoor. PrDB: Managing and exploiting
rich correlations in probabilistic databases. VLDB J., 18(5), 2009.

[30] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database Systems
Concepts. McGraw-Hill, fourth edition.

[31] S. Singh, C. Mayfield, R. Shah, S. Prabhakar, S. Hambrusch,
J. Neville, and R. Cheng. Database support for probabilistic attributes
and tuples. In ICDE, 2008.

[32] N. E. Taylor and Z. G. Ives. Reconciling while tolerating
disagreement in collaborative data sharing. In SIGMOD, 2006.

APPENDIX
A. PROOFS

We next present the proofs of our theoretical results. To estab-
lish the necessary terminology, we first review the definitions and
semantics of U-relations and ULDBs in Section A.1, before pre-
senting the proofs that utilize these definitions in Section A.2.

A.1 Existing data models

A.1.1 U-Relation
For the purposes of our proofs, we will use a simplified version

of the U-relation introduced in [10], which however still is a com-
plete model for uncertain data.

Definition. According to this simplified definition, a U-relation
is a pair (W,U) consisting of a data-table U and a world-table W .
Intuitively, the data-table stores the possible alternatives together
with formulas expressing their correlations, while the world-table
holds the possible values that the variables involved in these for-
mulas may take. An example of a U-relation can be seen below:

W V Rng
c1 l1
c1 l2
c2 l3

U D A1 A2

c1 7→ l1 Movie1 2004
c1 7→ l2, c2 7→ l3 Movie1 2005
c2 7→ l3 Movie2 1971

Formally, the world-table W has schema W [V,Rng] and stores
tuples of the form (ci, lj), where ci is a variable and lj a value in
the domain of ci. The data-table U has schema U [D, Ā], where D
defines ws-descriptors (which intuitively are formulas guarding the
appearance of a tuple) and Ā = A1, . . . , An define the rest of the
attributes of the relation. A ws-descriptor is a formula of the form
c1 7→ l1, . . . , ck 7→ lk, where ci is a variable and li is a value in
the domain of ci according to W (i.e., (ci, li) ∈W).

Semantics. A U-relation (W,U [D,T, Ā]) represents the set of
possible worlds over a single flat relation U ′ with schema U ′[Ā],
each of whom can be created as follows: Select a total valuation
over all variables in W (recall that the domain of each variable
is described in W) and then select only those tuples of U whose
ws-descriptors satisfy the valuation and project them on their Ā
attributes. A ws-descriptor is said to satisfy a valuation v when for
each assignment of the form ci 7→ li in v, the ws-descriptor either
contains the term, or it does not contain any term involving ci.

It is easy to see that the U-relation, as described above, is a com-
plete model for a schema consisting of a single relation (i.e., it can
represent any finite set of possible worlds over a single relation). In
particular, given a set of possible worlds P over a single relation,
one can create a U-relation (W,U) that represents P as follows:
Assign to each possible world in P an ID. Then create a world-
table W that holds a single variable c1, whose domain is the set
of possible world IDs. Finally, create a data-table that holds the
bag-union of all tuples appearing in a world in P , with each tu-
ple augmented by a ws-description of the form ci 7→ lj , where lj
the ID of the possible world in which this tuple appears. Based on
the semantics of the U-relation, (W,U) represents P . Thus it is

obvious that even a U-relation with singleton ws-descriptors (i.e.,
ws-descriptors of the form ci 7→ li) constitutes a complete data
model over a single relation.

Note that the original definition of the U-relation, introduced in
[10], is slightly more involved allowing among others: (a) the rep-
resentation of possible worlds over an arbitrary relational schema
(that may contain more than one relation) and (b) a more com-
pact representation (through the use of vertical decompositions).
Although in the main body of the paper we refer to the original
definition of U-relations, for the purposes of our proofs the simpli-
fied definition described above is sufficient, as we only need a data
model that is provably complete for schemas with a single relation
(and which might be non-compact as we will not reason about its
compactness).

A.1.2 ULDB
As described in [15], a relation in the ULDB data model, called

x-relation is a set of x-tuples, each of each is a multiset of one
or more tuples called alternatives. An x-tuple may be marked as
optional and an alternative may be marked with a provenance for-
mula. Intuitively, x-tuples in ULDBs correspond to ac-tuples in ac-
databases and alternatives in the former correspond to ac-alternatives
in the latter. For the purposes of the proofs, we do not need to de-
fine the exact semantics of ULDBs (for these the reader is referred
to [15]). For our subsequent discussion it suffices to know that: (a)
each x-relation over some schema represents a set of possible rela-
tional instances over the same schema and (b) each such instance
will contain a subset of the alternatives appearing in the x-relation.

A.2 Proofs

A.2.1 Compactness
PROOF OF THEOREM 3.8 [COMPACTNESS]. Let Iac be an

arbitrary ac-relational instance representing some set of possible
worlds P . We will show that any ULDB that represents the same
set P of possible worlds is not more compact than Iac. Let IULDB
be an arbitrary x-relation that represents the same set of possible
worlds as Iac.

It follows from the semantics of an ac-relation, that for every in-
terpretation of an ac-tuple in Iac, there exists a possible world in P
that contains that interpretation. On the other hand it follows from
the semantics of an x-relation, that in order for an x-relation to rep-
resent a possible world containing some tuple t, this tuple should
appear as the alternative of some x-tuple in the x-relation. Com-
bining these two statements, we infer that, since IULDB represents
the same set of possible worlds as Iac, it contains as alternatives all
interpretations of all ac-tuples in Iac.

Moreover, IULDB contains such an interpretation t as an alter-
native as many times as the number of ac-tuples in Iac that have t
as their interpretation. To see why this is the case, assume that n
ac-tuples of Iac have t as one of their interpretations. Then, one
possible world represented by Iac would contain n occurrences of
t. Since every alternative in an x-relation can give rise to at most
one tuple in a possible world, IULDB should also contain n alter-
natives that are identical to t.

Thus, if Iac has n ac-tuples with k1, . . . , kn interpretations, then
IULDB will contain at least k1 + . . . + kn alternatives. Let w be
the width (i.e., the number of columns) of relations Iac and IULDB .
Based on the above, IULDB contains at leastw(k1 + . . .+kn) data
values (i.e., cells). On the other hand, by definition each ac-tuple of
width w, having ki interpretations contains at most w × ki values.
Thus, Iac uses at most w(k1 + . . .+ kn) data values and therefore
it is not less compact than IULDB .

A.2.2 Closure
PROOF OF THEOREM 5.6 [CLOSURE]. Let J be a set of join

attributes, Q a join-consistent (w.r.t. J) CQ=
1 query and I a join-

consistent (w.r.t. J) ac-database. We need to prove that the possible
answers of Q over I can be represented by an ac-relation. We will
prove it in a per-operator basis, i.e., we will prove it first for CQ=

1

queries involving only a projection, then for CQ=
1 queries involv-

ing only a selection and finally for CQ=
1 queries involving only a

join. Since a CQ=
1 query can be computed by composing multiple

such subqueries, the result follows.

Projection. LetQ be πx̄(R), whereR is a relation in the schema
of I . We will prove that the possible answers of Q over I can be
represented by an ac-relation. Let IR be the relational instance of
R in I . For every possible world DB represented by IR, the corre-
sponding possible worldQ(DB) in the possible answers ofQ over
IR will have the tuples in DB projected on their x̄ attributes. To
represent the same behavior in an ac-relation, it suffices to take the
original ac-relation and project away all but the x̄ attributes. Let us
denote this new ac-relation by I ′R. In this way, whenever a tuple ap-
peared in the set of possible worlds represented by IR (because of
a certain choice of ac-alternatives and optionality flags), the same
tuple projected on x̄ will appear in the set of possible worlds repre-
sented by I ′R. Therefore this new ac-relation represents the possible
answers of Q over I .

Selection. Let Q be σx=v(R), where R is a relation in the
schema of I and let IR be the relational instance of R in I . We
can use similar reasoning to show that the possible answers of Q
over I can be represented by an ac-relational instance I ′R that is
derived from IR as follows: For each ac-alternative that violates
the selection predicate, remove this alternative and introduce in the
corresponding ac-tuple a fresh optionality flag. If you introduce
two optionality flags into two different tuples due to the same al-
ternative (i.e., due to alternatives in fragments that share the same
dependency marker), then use the same marker for both optionality
flags.

Join. Let Q be R ./ S, where R 6= S and R,S are relations in
the schema of I and let IR, IS be the relational instances of R,S,
respectively in I . We can use similar reasoning to show that the
possible answers ofQ over I can be represented by an ac-relational
instance IQ that can be derived from IR and IS as follows: For each
pair of ac-tuples from IR and IS that share the same values for the
join attributes, create a new ac-tuple that contains the concatena-
tion of fragments of the original tuples, as well as the union of their
optionality flags. Moreover, to capture correlations, whenever two
ac-tuples in the new relation IQ are introduced due join with the
same IR (or IS) tuple, the corresponding fragments from IR (or
IS , respectively) should share the same marker in both tuples.

A.2.3 Tightness
PROOF OF THEOREM 5.7 [TIGHTNESS]. We want to prove that

for every set P of possible worlds over a single relation, there exists
an ac-database instance I and aCQ queryQ s.t. PAnswersQ(I) =
P . We will prove this by showing that for every U-relation (which
is a complete data model) we can construct an ac-database instance
I and a CQ query Q such that the possible answers to Q over I
represent the same set of possible worlds as the U-relation.

As input, we consider a U-relation with singleton ws-descriptors

as defined in Section A.1.1. Given such a U-relation (W,U [D,T, Ā]),
we create two ac-relations W ′[D] and U ′[D, Ā], s.t. the possible
answers to the query Q : πĀ(W ′ ./ U ′) represent the same set of
possible worlds as the U-relation (W,U).

Intuitively, the goal of this construction is to create ac-relations
W ′ and U ′ that are the equivalents of the original relations W and
U , respectively. The former will state the possible values that every
variable can take and the latter will state the tuples together with the
variable assignments that control their appearance.

To construct W ′ and U ′ we proceed as follows: First, for each
value lj in the domain of a variable ci, we create a fresh value ci_lj
used to represent the assignment ci 7→ lj . Then, we populate ac-
relation W ′ by creating for every variable in the world-table W a
single ac-tuple, whose ac-alternatives are all values ci_lj , such that
lj is in the domain of ci. Intuitively, each ac-tuple in W ′ states the
possible values that each variable can take. Finally, we populate
U ′ by creating for every tuple (d, ā) in the data-table U a ac-single
tuple with a single ac-fragment and a single alternative (d′, ā), such
that d′ is the value corresponding to the ws-descriptor d (i.e., if
d = {ci 7→ lj} then d′ = ci_lj). Intuitively, U ′ holds the contents
of U with the ws-descriptors converted to values.

For example, given the following U-relation:

W V Rng
c1 0
c1 1
c2 0
c2 1

U D A1

c1 7→ 0 a
c1 7→ 1 b
c1 7→ 0 c
c1 7→ 1 d
c2 7→ 0 e
c2 7→ 1 f

the construction outlined above yields the following ac-relations
W ′ and U ′:

W ′ : U ′ :

Based on the semantics of the ac-database described in Section
3.2, each possible world represented by the ac-database instance
(W ′, U ′) contains one assignment for each original variable in W
(i.e, a total valuation over the variables in W) and it also contains
all tuples in U . Thus by joining W ′ and U ′ on D and project-
ing on the Ā attributes, we get in each possible world in the query
answer all tuples in U (projected on their Ā component) whose
ws-descriptors satisfy the same total valuation. In other words, the
possible answers to Q : πĀ(W ′ ./ U ′) represent the same set of
possible worlds as the initial U-relation (W,U).

A.2.4 Best Approximation Hardness

PROOF OF THEOREM 5.10 [BEST APPROXIMATION HARD-
NESS]. To prove the theorem, we first prove the following lemma
about the number of ac-tuples in a best approximation:

LEMMA A.1. Let |I| be the number of tuples in a relational
instance I . Given a finite set of possible worlds P over a single
relation, any best approximation of P contains exactlymaxI∈P |I|
ac-tuples (or in words, as many ac-tuples as the number of tuples
in the largest possible world within P).

PROOF. It follows from the semantics of the ac-relation that
each ac-tuple can give rise to at most one flat tuple in a possible
world. Thus, any approximation of P (i.e., any ac-relation that rep-
resents a superset of P) should contain at least as many ac-tuples as
the number of tuples in the largest possible world in P (otherwise
it would not be able to represent the largest possible world).

We next show that the best approximation will contain exactly
that many tuples by constructing an approximation of P that has as
many ac-tuples as this lower bound. Let R be the bag-union of the
sets of tuples in the possible worlds in P . Consider an ac-relation
withmaxI∈P |I| identical ac-tuples, s.t. each ac-tuple is composed
of a single ac-fragment and has as its ac-alternatives all tuples in
R. Additionally each ac-tuple is marked as optional with its own
independent optional flag. The constructed ac-relation represents
all possible worlds that can be constructed by taking a subset of
cardinality at most maxI∈P |I| of the set of all tuples in the union
of the possible worlds in P . In turn, this means that the constructed
ac-relation represents a superset of P and therefore it is an approx-
imation of P .

Having shown that (a) any approximation ofP has at leastmaxI∈P |I|
ac-tuples and (b) there exists an approximation of P that has ex-
actly maxI∈P |I| ac-tuples, we have shown that any best approxi-
mation of P has exactly maxI∈P |I| ac-tuples.

To prove the NP-hardness of computing the best approximation
we prove NP-hardness of the corresponding decision problem con-
cerning the arity of a best approximation:

THEOREM A.2. Given a finite set of possible worlds P over a
single relation, deciding whether a best approximation of it con-
tains at least k ac-tuples for any natural number k is NP-hard.

PROOF. We show this by reduction from the MAX-2-SAT prob-
lem. The MAX-2-SAT problem (which has been shown to be NP-
hard) is defined as follows: Given a boolean formula φ in conjunc-
tive normal form with two literals per clause and a natural number
k, decide whether at least k clauses of φ can be simultaneously
satisfied by an assignment.

Given an input φ, k to the MAX-2-SAT problem our goal is to
construct a U-relation (W,U) s.t. at least k clauses of φ can be
simultaneously satisfied iff a best approximation of (W,U) has at
least k ac-tuples.

To this end, we create a relation U that for each clause (xi ∧ xj)
in φ has two tuples; one with a ws-descriptor xi 7→ 1, xnew 7→ 0
and another with a ws-descriptor xj 7→ 1, xnew 7→ 1 (if xi is
negated, then xi 7→ 1 is replaced by xi 7→ 0 and similarly for xj).
In this case, xnew is a fresh variable that is created for every clause
in φ. Moreover we create a relation W stating that the domain of
all variables (those appearing in φ as well as those fresh variables
introduced during the construction phase) is {0, 1}. Note that the
values of the Ā attributes in the tuples in the U-relation are irrele-
vant; therefore we use a single A attribute and assign to it arbitrary
values.

For example, the formula

(x1 ∨ ¬x2) ∧ (x1 ∨ x2)

leads to the following U-relation (W,U):

W V Rng
x1 0
x1 1
x2 0
x2 1
xnew1 0
xnew1 1
xnew2 0
xnew2 1

U D A1

x1 7→ 1, xnew1 7→ 0 a
x2 7→ 0, xnew1 7→ 1 b
x1 7→ 1, xnew2 7→ 0 c
x2 7→ 1, xnew2 7→ 1 d

It is easy to see that at least k clauses of φ can be simultaneously
satisfied iff there exists a possible world represented by (W,U)
with at least k tuples (since a total valuation over the variables in
φ satisfying at least k clauses can be extended to a total valuation
over the variables in (W,U) that produces a possible world with at
least k tuples and vice versa). Thus at least k clauses of φ can be
simultaneously satisfied iff the largest possible world represented
by (W,U) has at least k tuples. But according to Lemma A.1 any
best approximation of the set of possible worlds P represented by
(W,U) has as many ac-tuples as the number of tuples in the largest
possible world in P . Thus at least k clauses of φ can be simulta-
neously satisfied iff any best approximation of the set of possible
worlds represented by (W,U) has at least k ac-tuples (which com-
pletes the reduction).

