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The different combinations of genes active in different cells control the development and diversity of multicel-
lular organisms. Yet the codes that control this process, written in both cis–regulatory and protein–coding DNA
sequence, are poorly understood. This is despite the availability of imaging techniques that allow detection of gene
activity at the resolution of single transcription units on chromosomes in individual interphase diploid nuclei[1].
While it has been shown that digital cell atlases are indeed possible[2], producing query-able models from imaging
for Systems Biology[3] is far from commonplace for even the simplest of organisms.

While much algorithmic work has been done on transforming pixels to meaningful objects (i.e. segmenting cell
nuclei)[4], this necessary first step is far from a solved problem. Algorithm tuning remains a critical component
and requires expertise in computer vision and image processing. This expertise is called upon repeatedly with new
experimental data: when changes in the model organism, hybridization method, or the microscope result in changes
to the generated images. We have successfully developed adaptive segmentation methods[5] that, while tuned for
particular types of images, are tuned using machine learning methods. The advantage machine learning provides
is rather than have the experimentalist tune the computer vision parameter(s) directly—this, again, requires an un-
derstanding of computer vision—the experimentalist instead tunes the system by providing direct feedback. The
feedback mechanism is designed to be a of a natural form: given a collection of segmented pixels, the experimen-
talist labels each collection as “a partial nucleus”, “a combination of two nuclei”, “a complete nucleus”, etc. From
these these labeled collections we build classifiers that mimic the experimentalist’s recognition of various segments.

Using the human labeled examples as input, classifiers are built using JBoost[6], an open source, Java imple-
mentation of the Adaboost machine learning algorithm[7]. Adaboost generates a mapping from segments to scores,
where high scores correspond to high confidence that the segment is correct (Figure 1a–g). Adaboost is a general-
purpose learning algorithm which is particularly powerful when combining many weakly predictive features. The
predictive features in this case are the values of the morphological features of the segments (Figure 1f). JBoost gen-
erates classifiers in a form of decision tree called Alternating Decision Trees (ADT)[8]. The ADT classifier (Figure
1g) acts a as proxy for the experimentalist, and we use these classifiers to guide the search for proper segmentations.
As the experimental conditions change for certain collections of pixels, or as the objects we are looking for change,
we generate new classifiers using newly labeled data and can often use existing classifiers to bootstrap the labeling
process. We have developed tools to decrease the time needed to generate a new classifier by an order of magnitude
(from weeks or days, to days or hours).

In this work we describe uses for these collections of classifiers: initially as part of toolset aimed at building
digital cell atlases that encode the spatial and temporal activity of a variety of developmental regulatory genes in
embryos of Drosophila melangaster (Figure 1h–l), and later as part of a classifier distribution system: a repository
of classifiers available for use by the wider biological community. This repository is envisioned to allow sharing of
classifiers designed for specific experimental setups among labs who contribute classifiers and data back to the larger
system. We believe that the successful completion of this work will mark an important step in the use of adaptive
systems in imaging and in the future use of imaging within Systems Biology.
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Fig. 1: (a) Example of slice from confocal microscopy labeled with DAPI and (b) the results when a general, global threshold used to find
nuclei. (c) A variety of segmentations are labeled by experimenters based on “correctness”. (d) Results of local thresholding algorithm
that uses (e) classifier approach based on (f) morphological features extracted from each example nuclues. (g) An alternating decision tree
showing the first three decision rules of our classifier for DAPI. (h–k) Application of this technique to mRNA channels which leads to (l)
spatial model of transcription within nuclei. Higher resolution images are available at http://eye.ucsd.edu
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