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Our Approach

• Tuning required for computer vision 
algorithms (for both initial use and as 
experimental conditions change)

• Tuning requires computer vision expertise

• experimentalist ! computer vision 
expert
(typically neither side wants =)

• use machine learning to mimic biologist 

• intuitive interface engages biologist in training machine

Challenge

1: for all framea, in stack do
2: segmentsa = {}
3: for all thresholds t from low to high do
4: B = framea > t
5: CE = 2D connected elements in B.
6: for all cej in CE do
7: p = F(cej)
8: if p ids “good” then
9: mask (remove) cej from framea.

10: add cej to segmentsa.
11: end if
12: end for
13: end for
14: Connect segments between segmentsa and segmentsa−1

15: end for

Fig. 2. Pseudocode for Performance Based Thresholding

tures. This process is described below. The second part is a map-
ping from the feature values to scores for each of the labels we use:
“good”, “too small”, and “too big”. This second part is constructed
using learning and is described Section 3.

The features we compute are based only on the shape of the con-
nected element (CE) in question and not on the intensity values of
the pixels within the element. Figure 3 describes the basic geometric
quantities of a segment that we use to describe shape. The quan-
tities are: the area of the CE (A), the length of the perimeter (P ),
and the eigenvalues of the covariance matrix between the horizon-
tal and vertical locations of the pixels in the CE (λ1,λ2)—these can
also be interpreted as the lengths of the major axis of an ellipse that
approximates the shape of the CE. Another important quantity is the
area of the convex hull—the smallest convex body that contains the
segment.

Using these quantities we define the following features. We use
these features rather than the geometric quantities themselves be-
cause they emphasize different geometric properties. In this we fol-
low the work of Lin et. al [3, 4]:

1. mean: a measure of size µλ = (λ1 + λ2)/2

2. ratio: a measure of skew λmin/λmax

3. Compactness: P 2/(4πA)

4. Effective Diameter:
p

4A/π: diameter of circle with same
area as the object

5. Convexity: Area / Convex Area

6. Eccentricity: ||f1 − f2|| / major axis length: ratio of the
distance of the foci to the major axis for the ellipse that has
the same second order moments as the object.

7. Circularity: µd/σd where d = ||p′−p|| is the distance from
centroid to each pixel of the object as p′ represents each pixel
in object and p is centroid of object.

We make no claim that this set of features is optimal or complete.
It seems sufficient to capture the information needed to discriminate
between good and bad segmentations in our dataset. Segmenting
nuclei in other experimental conditions might require different fea-
tures. However, as will be briefly discussed in the next section, there
is no harm in adding a large number of irrelevant features. The per-
formance of our learning algorithm is unlikely to overfit even when
given a very large set of features out of which only very few are infor-
mative. So, to the degree that computational load is not a constraint,

we recommend adding any feature that might be useful, rather than
performing a priori feature selection to reduce the dimensionality of
the feature vector.
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Fig. 3. Segment geometry. p represents object centroid. (a) Convex
Hull for object. R is radius measure from p to a pixel on the object’s
perimeter (P). (b) the ellipsoid with the same second order moments
as the object. This ellipsoid has major and minor axes (λ1 and λ2)
and f1 and f2 represent the foci of the ellipse.

3. LEARNING PERFORMANCE SCORING FUNCTIONS

Given a feature vector that captures the salient shape information
about a segment, we wish to compute a score that will quantify the
likelihood that the segment correctly captures the shape of the nu-
cleus. This is the most important—and the least well-defined—step
in the PBT algorithm. We construct F , the function mapping feature
vectors to performance scores, using a machine learning algorithm.
A machine learning algorithm receives as input a “training set”—
here a set of randomly selected segments, each with an associated
label, stating whether the segment is “good”, “too small” or “too
large”. The learning algorithm selects a function to approximate the
relationship between segments and labels in the training set and is
likely to perform well on similar, but yet unseen segments. There are
many learning algorithms; decision trees, nearest neighbors, neural
networks, and support vector machines are a few of the more popu-
lar ones. We use a learning algorithm called Adaboost, invented by
Freund and Schapire [7]. Adaboost has several advantages in this
context:

• The performance of the algorithm is not sensitive to the num-
ber of irrelevant features. This frees the designer to add any
feature they think might be useful, without risking “overfit-
ting”, i.e. finding a function that performs well on the training
data but poorly on unseen data.

• The features do not have to be strongly correlated with the
desired label. For a feature to be useful, it is sufficient if it
has a weak, but statistically significant, correlation with the
label.

• The performance of boosting does not change if the features
are scaled, shifted, or transformed by any monotone function.

We use a learning algorithm based on Adaboost that creates
structures similar to decision trees: “alternating decision trees”. The
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1. mean: a measure of size µλ = (λ1 + λ2)/2

2. ratio: a measure of skew λmin/λmax

3. Compactness: P 2/(4πA)

4. Effective Diameter:
√

4A/π: diameter of circle with same area as the
object

5. Convexity: Area / Convex Area

6. Eccentricity: ||f1 − f2|| / major axis length: ratio of the distance of
the foci to the major axis for the ellipse that has the same second order
moments as the object.

7. Circularity: µd/σd where d = ||p′ − p|| is the distance from centroid
to each pixel of the object as p′ represents each pixel in object and p is
centroid of object.
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Pseudocode for Performance Based Thresholding (PBT)

for more information see: www.cse.ucsd.edu/~yfreund/papers/IntroToBoosting.pdf

method count diff % found US Conn
Mean 2535 -1126 69% 7572 347
Otsu 2741 -920 75% 4134 186
PBT 3505 -156 96% 20 173

Performance of various thresholding algorithms 

in detecting objects vs. ground truth 

segmentation from CT-FISH confocal image 

stack of DAPI.  The actual number (ground 

truth) of 2D nuclei segments in tested 18 frame 

stack containing approximately 600 nuclei, 

each spanning about 9 frames, is 3661.

diff = difference from ground truth, 

US = under-segmentation

Conn = Connected (nucleus not detected as a 

separate segment but combined with another 

nucleus.)

Alternating Decision Tree
(Quality scoring)


